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1. Introduction 

Object detection within hyperspectral (HS) images is a highly desired goal for many Army 
applications.  HS sensors are passive sensors that simultaneously record images for many 
contiguous and narrowly spaced regions of the electromagnetic spectrum (1).* Such a dataset 
lends itself to the ability to search large spatial areas, ideally in an automated and timely fashion.  
In order for the detector to have value, it should have a high rate of correct detection and a low 
rate of false alarms.  The detector would be based on material detection to take advantage of the 
high spectral resolution relative to the spatial resolution available.  If the material is known, then 
the spectrum is also known, and the detector would compare each multivariate pixel in the HS 
dataset to the known spectrum.  However, often the exact material of interest is not known a 
priori, or the number of spectra in a material of interest library is too large to search for all 
possible materials.  Under these situations, an anomaly detector is required. 

The goal of an anomaly detector is to identify statistical outliers, that is, data points that are 
atypical compared to the rest of the data.  Multivariate models are used to define the spectral 
variability of the data, and the majority of the data pixels are assumed to be spectrally 
homogeneous and are modeled using a multivariate probability density function (PDF) with a 
single set of parameters.  An anomalous pixel is one that has low probability of belonging to the 
particular PDF.  Unlike classification algorithms which try to segment the pixels into 
homogeneous clusters, anomaly detection algorithms label each pixel as either containing an 
anomalous material relative to the clutter background or not.  

To date, most HS anomaly detectors discussed in the literature (see, for instance, (2, 3, 4, 5, 6, 
and 7) have been evaluated by testing a few HS image sets and estimating the well-known ROC 
(receiver’s operational characteristics) curve in order to compare performances among these 
detectors.  Although this evaluation approach can be helpful in assessing detectors’ rates of 
correct detections and false alarms on a limited dataset, it does not shed light on reasons for these 
detectors’ strengths and weaknesses.  

This report discusses a more rigorous approach to testing and comparing HS anomaly detectors.  
The approach offers some useful properties, such as statistical hypothesis tests representing 
different kinds of data—potentially found in local spatial areas in HS imagery, and data 
specification parameters that can gradually increase the difficulty level of these tests.  Having 
such properties in a detection-evaluation approach is desired because real HS imagery offers 
challenging hypotheses to anomaly detectors, and simulating these hypotheses in a meaningful 
way is not a trivial matter.  

                                                 
* In this report, literature references are referred to using italic numbers, e.g., (1).  Equations numbers are nonitalic, e.g., 

equation 1. 
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A key problem devising such an evaluation approach lies in the fact that, in applications using 
real HS imagery, sample pairs representing the null hypothesis (H0) and the alternative 
hypothesis (H1) belong to an open set of infinite possibilities.  For instance, let’s denote the 
sample pair ( ))(

0
)(

02
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01
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0 0
,,, jjjj w

n
www XXXX =  and ( ))(

1
)(

12
)(

11
)(

1 1
,,, jjjj w

n
www XXXX =  as multivariate random 

samples drawn from a real (N by N by B) HS imagery, where ( )1
)(

1 ,,1 nhjw
h =X  can be 

interpreted as B-dimensional vectors forming a block of data 1W , wj indexes the spatial location 
of the centroid of 1W  in the imagery’s N by N area, ( )0

)(
0 ,,1 nujw

u =X  can be interpreted as B-
dimensional vectors indexed by the same jw  but forming an outer ring of data 0W  surrounding 

1W  ( 0W  and 1W  are mutually exclusive), ( N  x N ) >>  0n  and ( N  x N ) >>  1n  for >>  
denoting much greater than (e.g., for a particular application, N = 640, the imagery’s area is 
409600 square pixels, and each 0n  and 1n  is between 100 and 400 ).  In addition, assume that 
these multivariate random samples belong )(∈  to homogenous classes ( )KkCk ,1=  or to a 
mixture of classes ( )KCCM ,,1 .  Using these denotations and assumptions, some of the sample 
pair possibilities representing H0 and H1 are as follows:  
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where VLL wwwww ≠≠≠≠≠≠ +121  as they index the centroid of 1W  at different spatial 
locations in the imagery where the particular ( )LiH i ,,1 0 =  or ( )VvH v ,,1 1 =  occur under 

0H  or 1H , respectively. 

The total number of classes K under 0H  depends on the scene’s heterogeneity and on the sizes 
of 1W  and 0W  (especially on the size of 0W ), where the sizes of 1W  and 0W  are 1n  and 0n , 
respectively.  Since real HS data are typically heterogeneous, larger sizes of 1W  and 0W  imply a 
larger number of different classes K.  In the target application, 0n  and 1n  are typically between 
100 and 400 pixels yielding a K in 0W  between 3 and 6.    

Notice that under 1H , classes CK+1 and CK+2 constitute the only anomalous classes relative to 
classes under 0H  and, therefore, they are the desired targets in this discussion. 

In the target application, many of the sample pair possibilities shown above can occur and, 
therefore, could be used to represent entire hypotheses, 0H  and/or 1H .  If we were to conduct 
simulation experiments using multiple of those possibilities, however, it would be difficult to 
separate subtle performance differences between detectors.  So, in order to focus this study, a 
few of those possibilities will be chosen to model some of the important challenges an anomaly 
detector may face in the course of training and testing large HS imagery, and idealized samples 
will be generated to allow various challenges to appear spontaneously as a detector tests for these 
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samples. In this report, an idealized multivariate sample is defined as being independent, 
identically distributed (iid), multivariate normally distributed (Gaussian) sample having both 
mean and covariance fully specified.  

The remainder of this report is organized as follows:  section 2 addresses the power test of two 
competing anomaly detectors using idealized homogeneous pseudo samples, and added noise; 
section 3 addresses the power of the test of the same competing detectors using idealized pseudo 
samples of mixtures; section 4 addresses the power of the test of multiple competing anomaly 
detectors using idealized pseudo cubes, which mimics multispectral cubes of increasing 
background clutter complexity; and section 5 concludes this report.  

2. Statistical Method Using Idealized Homogeneous Multivariate Samples  

This section illustrates a statistical method using idealized homogeneous multivariate samples, 
where simple sets of null and alternative hypotheses are specified with added noise.  For two 
simulation experiments discussed in this section, we estimate parameters (mean and covariance) 
using real spectral data and use these estimates to generate ideal simulated samples for both 
experiments.  To observe relative strengths and weaknesses of different anomaly detection 
techniques using this method, two competing anomaly detectors were selected for this study: an 
univariate based anomaly detector (AsemiP) (7) and the industry standard multivariate based 
anomaly detector (RX) (2).  (See appendix for their mathematical representations.)  

Using the denotations introduced in section 1, the first experiment uses 01H  to represent the 
entire null hypothesis 0H .  Detectors’ outputs using samples under 0H  will be used to obtain 
cutoff thresholds, and subsequently estimate type I errors of both detectors.  (The type I error is 
the probability of rejecting 0H  given that 0H  is true, see for instance, (8)).  An alternative 
hypothesis similar to 11H  is then used to represent the entire 1H  for the detectors’ power 
estimates.  (The power of a detector is defined as 1.0 minus type II error, where the type II error 
is the probability of not rejecting 0H  given that 1H  is true (8).)  A key factor in the first 
experiment is that classes CK+1 and C1 are similar classes (see section 1), so, we will add 
uncorrelated normally distributed noise to samples generated to represent CK+1 and will vary the 
amount of noise to measure the power behavior of both detectors.  The goal here is to observe 
the power of both detectors as 1H  varies from an easier alternative (CK+1 with high noise) to a 
harder alternative (CK+1 without noise) relative to a given 0H .  Note that noise is only applied to 
the generation of CK+1 samples under 1H  in the first experiment.  

In the second simulation experiment, using also parameter estimates from real spectra to generate 
ideal samples, we will use an alternative hypothesis similar to 12H , where in this case classes 
CK+2 and C1 are distinct from each other.  We then will check the power behavior of both 



 

 5  

detectors by varying, instead, a noise term under 0H , which will be added to one of the random 
samples in a sample pair similar to 01H .  The goal here is to observe the power of both detectors 
as a function of a noise-varying null hypothesis. 

2.1 Data Structures and Representations of the Null/Alternative Hypotheses  

In this subsection, we describe data models for the generation of random samples 0X  and 1X  
representing the null and alternative hypotheses.  Models for two simulation experiments will be 
described:  Experiment 1 and Experiment 2. (We will use the denotation introduced in section 1.) 

Experiment 1 

The goal of this simulation experiment is, in essence, to answer a question from a generalized 
concern: how much noise would be required under H1 to sensitize each testing detector, given 
that—by design—neither detector is able to confidently separate samples under H0 from those 
under H1 without added noise?  To answer this question, we will use homogeneous classes and 
determine which detector can yield higher power as a function of decreasing asymmetric noise 
under H1.  (In this case, asymmetric noise under H1 relates to noise being added to only one of 
the samples in the detector’s input sample pair, as it will be shown later.)  

Our conjecture is that the detection approach that can yield significantly higher power, in the 
context of Experiment 1, is a better detector, since this detector would potentially demonstrate 
higher sensitivity to harder alternatives.  In the context of Experiment 1 this is a generalized 
problem.  Experiment 1 excludes the presence of sample mixtures in either hypothesis or in both 
null and alternative hypotheses.  

Two sets of real spectra representing two homogenous classes C1 and CK+1 were selected and 
used to estimate mean and covariance sets, where the 120-dimensional (dim) mean estimate 0μ̂  

and the 120 by 120 covariance estimate 0Σ̂  relates to C1, and the 120-dim mean estimate 1μ̂  and 

the 120 by 120 covariance estimate 1Σ̂  relates to CK+1.  Although our selections were arbitrarily 
made, we used a selection criterion, such that, C1 and CK+1 are not very distinguishable from 
each other, i.e., both detectors should have problems separating these classes based only on 
testing samples from both classes.  Each spectral set consisted of 2500 spectral samples 
representing 120 frequency band material responses in the visible to near infrared (VNIR) region 
of the spectrum. Parameter estimates ( )00

ˆ,ˆ Σμ  and ( )11
ˆ,ˆ Σμ  are specified in subsection 2.4. 

Null Hypothesis—H0:  We use an idealized case for H0 where 0n  multivariate samples 

000201 ,,, nXXX  are drawn independently from a normal PDF ( )Σμ,N , and another 1n  samples 

111211 ,,, nXXX  are drawn independently from the same PDF, such that, in both cases 

( ) ( )00
ˆ,ˆ, ΣμΣμ = . Both ( )00 ,,1 nuu =X  and ( )11 ,,1 nhh =X  are 120-dim column vectors.  The 
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null hypothesis H0 corresponds to an independent, identically distributed (IID) sample pair 
distributed (~) as follows   

 
( ) ( )
( ) ( ) ˆ,ˆ IID  ~   ,,,

  ˆ,ˆ IID ~   ,,,

00
)(
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)(

12
)(

11
)(

1

00
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)(
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)(

0

1

0

ΣμXXXX

ΣμXXXX

N

N
w
n

www

w
n

www

=

=
 (1) 

where )(
0
wX  and )(

1
wX  are independent, and mw ,,1=  indexes independent trials.  To relate 

(6.1), for instance, to the target application, consider, instead, mw ,,1=  indexing independent 
spatial locations in the HS imagery, where model (1) would be reasonably satisfied, such that, 

)(
1

wX  would represent a reformatted block of data W1 (centered at w) and )(
0
wX  would represent 

reformatted data from W1‘s outer ring W0, see figure A-1 in appendix A.  

 
Alternative Hypothesis—H1: In this hypothesis, since by design C1 and CK+1 are not separable 
classes using either detector, uncorrelated normally distributed random noise ( )

1
,,, 21 nηηη  is 

added to the samples belonging to CK+1 under H1 in order to yield some distinction between these 
two classes.  The alternative H1 then corresponds to the following sample pair   
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 (2) 

where 

     ( ) ( )11
)(

2
)(

22
)(

21
ˆ,ˆ IID  ~   ,,,

1
ΣμXXX Nw

n
ww , 

 ( ) ( )ηηηη Σ̂,0 IID  ~   ,,, )()(
2

)(
1 1

Nw
n

ww , 

)(
0
wX  and )(

1
wX  are independent, ( )0

)(
0 ,,1 nuw

u =X , ( )1
)(

2 ,,1 nhw
h =X , and ( ) ( )1,,1 nhw

h =η  are 

120-dim column vectors, mw ,,1=  indexes independent trials, ( )ηΣ̂,0N  is a normal PDF 

centered at zero in an 120-dim space where ηΣ̂  is a 120 by 120 diagonal matrix having non-zero 

components ( )120,,12 =bbζ  related to the diagonal components ( )120,,12 =bbσ  of 1Σ̂ by a 
noise level factor 0>p  (i.e., 22

bb pσζ = ). In this noise model, we consider p = 1.0 as adding 100 
percent (%) of noise to a multivariate sample. 

Using models (1) and (2) to generate pseudo samples, we would like to determine which detector 
can yield higher power at a lesser noise level under H1.  A detection approach that can yield 
higher power in this context is a better detector.  

Experiment 2 

The goal of this simulation experiment is, in essence, to answer a question from a more 
specialized concern: how much noise would be required under H0 in order to decrease power of 
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each testing detector, given that—by design—both detectors are able to comfortably separate 
samples under H0 from those under H1 without added noise?  To answer this question, we will 
determine which detector can yield higher power as a function of increasing asymmetric noise 
under H0, given that both detectors can confidently separate samples from H0 and H1 at zero 
noise.  (In this case, asymmetric noise under H0 relates to noise being added to only one of the 
samples in the detector’s input sample pair, as shown in (3)). 

Our conjecture is that the detection approach that can yield significantly higher power in the 
context of Experiment 2 is a better detector for that specialized concern, since this detector 
would potentially demonstrate lower sensitivity to noise under H0.  (Although the problem that 
Experiment 2 addresses is a specialized one, it can happen in the target application as discussed 
later.)  Experiment 2 excludes the presence of sample mixtures in either hypothesis or in both 
null and alternative hypotheses. 

In Experiment 2, we also selected and used two sets of real spectra representing two arbitrary 
classes C1 and CK+2, such that, both classes are significantly different from each other.  
Parameter estimates ( )00

ˆ,ˆ Σμ  and ( )22
ˆ,ˆ Σμ  were computed using 2500 samples from each class 

C1 and CK+2, where ( )00
ˆ,ˆ Σμ  are described in Experiment 1 and ( )22

ˆ,ˆ Σμ   are the corresponding 
estimates from CK+2.  Each spectral sample in both sets represents 120 frequency band material 
responses in the VNIR region.  Parameter estimates ( )22

ˆ,ˆ Σμ  are specified in subsection 2.4. 

Null Hypothesis—H0: 0n  multivariate samples 
000201 ,,, nXXX  are drawn independently from a 

normal PDF ( )Σμ,N , and another 1n  samples 
111211 ,,, nXXX  are drawn independently from 

the same PDF, such that, in both cases ( ) ( )00
ˆ,ˆ, ΣμΣμ = . Both ( )00 ,,1 nuu =X  and 

( )11 ,,1 nhh =X  are 120-dim column vectors.  For this experiment, however, uncorrelated 
normally distributed random noise ( )

0
,,, 21 nηηη  is added to one of the sample sequences in 

order to observe the power behavior of both detectors as a function of noise under H0. (Notice 
that in order to affect power of both detectors, noise under H0 was applied asymmetrically to one 
of the sample sequences, not to both.)  The null hypothesis then corresponds to 

 
( ) ( )
( ) ( ), ˆ,ˆ IID ~   ,,,

,,,,,,

00
)(

1
)(

12
)(

11
)(

1

)()(
2

)(
1

)(
0

)(
02

)(
01

)(
0

0

00

ΣμXXXX

XXXX

Nw
n

www

w
n

www
n

www

=

+= ηηη
 (3) 

where 
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)(
0
wX  and )(

1
wX  are independent, ( ) ( )0,,1 nhw

h =η  are 120-dim column vectors, mw ,,1=  

indexes independent trials, ( )ηΣ̂,0N  is a normal PDF centered at zero in an 120-dim space where 

ηΣ̂  is a 120 by 120 diagonal matrix having non-zero components ( )120,,12 =bbζ  related to the 

diagonal components ( )120,,12 =bbλ  of 0Σ̂ by a noise level factor 0>p  (i.e., 22
bb pλζ = ).    

Alternative Hypothesis—H1: 0n  multivariate samples 
000201 ,,, nXXX  are drawn independently 

from a normal PDF ( )Σμ,N , and another 1n  samples 
122221 ,,, nXXX  are drawn independently 

from another normal PDF ( )22 ,ΣμN , such that, ( ) ( )00
ˆ,ˆ, ΣμΣμ =  and ( ) ( ).ˆ,ˆ, 2222 ΣμΣμ =   Both 

( )00 ,,1 nuu =X  and ( )11 ,,1 nhh =X  are 120-dim column vectors.  This alternative hypothesis 
corresponds to  
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where )(
0
wX  and )(

1
wX  are independent, and mw ,,1=  indexes independent trials.  

Using models (3) and (4) to generate pseudo samples, we would like to determine which detector 
can yield higher power as a function of increasing asymmetric noise under H0.  A detection 
approach that can yield higher power would be considered a better detector for this particular 
case.  

2.2 Simulation Plan  

We used the following steps to conduct the simulation experiments using the data model 
described in section 2.1: 

i. Each multivariate random sample in the three sequences ( ))(
0

)(
02

)(
01 0

,,, w
n

ww XXX , 

( ))(
1

)(
12

)(
11 1

,,, w
n

ww XXX , and ( ))(
2

)(
22

)(
21 1

,,, w
n

ww XXX , as shown in (1), (2), (3), and (4), consists of 
covariates ( )120,,1=bxb  representing material radiance sensed by a HS sensor operating 
on 120 different frequencies.  Covariates bx  are highly correlated pseudo values and will 
be generated every trial from multivariate normal distributions, as shown in (1), (2), (3), 
and (4).  Parameter values for these distributions are estimated using real samples of 
material classes that are present in HS data.  Trials are indexed by w, where mw ,,1= , 
and the sample sizes 0n  and 1n  are fixed to 500.  

ii. We fix at once the distribution parameters of different classes to values estimated in (i), and 
fix also the parameters of the noise distributions in Experiment 1 and in Experiment 2 to 
values shown in (2) and (3), respectively, where noise samples are uncorrelated and zero-
mean normally distributed. 
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iii. Attaining Cutoff Thresholds/Estimating Type I Errors: For Experiment 1, values of 
{ }m

w
w

1
)(

0 =X  and { }m
w

w
1

)(
1 =X  (m = 1500) will be generated according to model (1) and 

introduced to both detectors.  These detectors will yield 1500 output results each.  Each set 
of 1500 results will be used to estimate an empirical PDF, and a cutoff threshold will be 
attained using the standard quantile method on the estimated PDF.  The desired type I error 
probability ( )ε  for the quantile method is fixed at once for both detectors to 05.0=ε .  The 
detectors’ corresponding cutoff thresholds will be applied to the corresponding detectors’ 
output results in order to estimate the type I error ( )ε̂  of each detector.  The type I error is 
estimated by counting the number of trials 1m  that satisfy the detector’s output values 
being greater than the detector’s cutoff threshold and computing the ratio mm /ˆ 1=ε . 

 For Experiment 2, since we are interested in measuring the effect of asymmetric noise 
under 0H  on the power of both detectors, the noise level factor p  in (3) will be 
systematically increased from a virtual zero value to a relatively high value ( )0.5=p  in 

order to obtain cutoff thresholds as a function of varying p  under 0H .  Values of { }m
w

w
1

)(
0 =X  

and { }m
w

w
1

)(
1 =X  (m = 1500) will be generated according to model (3) and introduced to both 

detectors, and we will follow the same procedure used in Experiment 1 to attain detectors’ 
cutoff thresholds and to estimate type I errors of both detectors at a fixed type I error 

05.0=ε .  This approach will be followed for different values of p . 

iv. Estimating the Power (1.0 – Type II Error):  In Experiment 1, since we are interested in 
observing the power behavior of both detectors as a function of decreasing noise under 1H , 
the noise level factor p  in (2) will be systematically decreased from a relatively high value 

( )0.5=p  to a virtual zero value.  Values of { }m
i

i
1

)(
0 =X  and { }m

i
i

1
)(

1 =X  (m = 1500) will be 
generated according to model (2) and introduced to both detectors, where the detectors’ 
corresponding cutoff thresholds will be applied to the corresponding detectors’ output 
results in order to estimate the power ( )θ̂  of each detector as a function of p .  The type II 
error at each p  is estimated by counting the number 2m  of trials that satisfy the detector’s 
output values being lower then the detector’s cutoff threshold and computing the ratio 

mm /2 , such that ( )mm /0.1ˆ
2−=θ .  

 In Experiment 2, values of { }m
i

i
1

)(
0 =X  and { }m

i
i

1
)(

1 =X  (m = 1500) will be generated according to 
model (4) and introduced to both detectors, where the detectors’ corresponding cutoff 
thresholds will be applied to the corresponding detectors’ output results in order to estimate 
θ̂  of each detector as a function of p , as shown in (3), see also (iii) under Experiment 2.  

v. Estimating Performance Confidence Intervals (CI): Results from (iii) and (iv) do not 
provide insights into the performance variability of the two detectors. In order to check this 
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variability, confidence intervals for (iii) ( )∑
=

−
−

±
R

r
rR

z
1

2
2/ ˆ

1
1 εεε α  and for (iv) 

( )∑
=

−
−

±
R

r
rR

z
1

2

2/
ˆ

1
1 θθθ α  will be estimated, where ( )2/11

2/ αα −Φ= −z  is the 2/1 α−  

quantile ( )05.0=α  of the standard normal distribution, random quantities simulated are 

indexed by r for a total number of simulation repetitions R=1000, ∑
=

−=
R

r
rR

1

1 ε̂ε , and 

∑
=

−=
R

r
rR

1

1 θ̂θ . This approach will be used in both simulation experiments.   

vi. The multivariate RX anomaly detector and the univariate AsemiP anomaly detector will be 
implemented as described in appendix.   

2.3 Simulation Results  

We present in this subsection results using the simulation plan that is outlined in section 2.2.  
Table 1 tabulates results using the null and alternative hypotheses, whose models are shown in 
equations 1 and 2 (Experiment 1), and table 2 tabulates results using models equations 3 and 4 
(Experiment 2).  

Table 1. Probability of correct detection (PD or Power) of each detector (Det) as a function of noise, Noise (%), 
under 1H . The mark * in the Noise (%) column indicates zero noise added. 

 

              500; 1500; 1000; 1, , ; 0.05n m R r R ε= = = = =   
Experiment 1 

    Type I  ( )ˆ ; 95%CIrε        PD or Power  ( )ˆ ; 95%CIrθ  

Det Noise(%) Lower Bound Upper Bound Lower Bound Upper Bound 
 

RX 
 
 
 
 
 
 
 
 
 

AsemiP 

 
* 
5 

10 
50 

100 
200 
300 
400 
500 

 
* 
5 

10 
50 

100 
200 
300 
400 
500 

 
0.048110241 
0.049104126 
0.049320603 
0.048363255 
0.049095127 
0.049170374 
0.048362805 
0.048295303 
0.048748037 

 
0.047090192 
0.048007154 
0.048157886 
0.049380616 
0.048667252 
0.049136926 
0.048104126 
0.048756542 
0.048786787 

 
0.051012207 
0.051960194 
0.052393682 
0.051616335 
0.051721199 
0.051523503 
0.051698418 
0.052051635 
0.051537677 

 
0.051781236 
0.051890804 
0.051964562 
0.051272444 
0.051251115 
0.052116135 
0.051610159 
0.051529171 
0.052193350 

 
0.059503804 
0.062518288 
0.137486868 
0.252472513 
0.482344791 
0.682996642 
0.837302959 
0.910798592 
1.000000000 

 
0.063058074 
0.212100870 
0.661850164 
0.845217278 
0.981156962 
1.000000000 
1.000000000 
1.000000000 
1.000000000 

 
0.081965582 
0.099420487 
0.182186600 
0.304874425 
0.545002146 
0.727003357 
0.855758264 
0.935732019 
1.000000000 

 
0.088416970 
0.261572598 
0.714476365 
0.885394966 
0.992720588 
1.000000000 
1.000000000 
1.000000000 
1.000000000  
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Table 2. PD (Power) of each detector (Det) as a function of noise, Noise (%), under 0H . The mark * in the Noise 
(%) column indicates zero noise added. 

 

              500; 1500; 1000; 1, , ; 0.05n m R r R ε= = = = =   
Experiment 2 

    Type I  ( )ˆ ; 95%CIrε        PD or Power  ( )ˆ ; 95%CIrθ  

Det Noise(%) Lower Bound Upper Bound Lower Bound Upper Bound 
 

RX 
 
 
 
 
 
 

 
 

AsemiP 

 
* 

50 
70 

100 
200 
300 
400 
500 

 
* 

50 
70 

100 
200 
300 
400 
500 

 
0.048181716 
0.047606835 
0.046734635 
0.048601189 
0.048999652 
0.048928291 
0.048105500 
0.048435825 

 
0.048700333 
0.048357151 
0.047625488 
0.049023210 
0.047972484 
0.048788093 
0.047862071 
0.048649448 

 
0.051018283 
0.051993164 
0.051465364 
0.053198810 
0.052400347 
0.052871708 
0.051694499 
0.051164174 

 
0.051699666 
0.052842848 
0.051774511 
0.052576789 
0.051427515 
0.051811906 
0.051337928 
0.051750551 

 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
0.700000000 
0.600000000 
0.500000000 

 
1.000000000 
1.000000000 
0.997260240 
0.952304476 
0.577642209 
0.378761022 
0.289353636 
0.233169749 

 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
1.000000000 
0.916848328 
0.739118276 
0.527949857 

 
1.000000000 
1.000000000 
0.999139759 
0.963695523 
0.615357790 
0.415038977 
0.321646363 
0.260030250 

 
Table 1 shows the 95% confidence intervals (CI 95%) of the estimated type I error ( )Rrr 1ˆ =ε   
and estimated power ( )Rrr 1ˆ =θ  corresponding to both detectors as a function of noise (by 
varying parameter value p ) under 1H .  The sample size was fixed to 500=n  and the total 
number of trials to 1500=m  as described in section 2.2 (i), the total number of simulation 
repetitions was fixed to R=1000, and the desired type I error as described in section 2.2 (iii) was 
fixed to 05.0=ε .  The column under Noise (%) shows the noise added to a multivariate sample 
under 1H  in terms of percentage relative to the diagonal terms of a real-datum estimated 
covariance matrix, as described in subsection 2.1.  The relationship between parameter p  and 
Noise (%) has the following expression and constraint: Noise (%) = ( )%100⋅p , for 0>p  ( p  
cannot be equal to zero because this equality would force the diagonal terms of the noise’s 
covariance to be all zeros; instead, the mark * in the Noise (%) column indicates zero noise 
added). 

Recall that the goal of Experiment 1 is to determine which detector can yield higher power as a 
function of decreasing asymmetric noise under H1, given that—by design—neither detector is 
able to confidently separate samples under H0 from those samples under H1 at zero noise.  
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The Power CI column in table 1 shows that at zero noise, Noise (%) marked as *, both detectors 
performed poorly in power, which validates that H1 is indeed a hard alternative at zero noise, as 
expected.  Table 1 also shows that for a given type I error ( 05.0=ε ) and sample size 
( 50010 === nnn ), the power of both detectors increased, as expected, as a function of 
increasing noise under H1, and that the AsemiP detector yielded a significantly higher power 
than did the RX detector, given that both detectors shared the same pseudo sample pairs 
generated in Experiment 1.  Notice, for instance, in table 1 that it required a noise level of 50% 
under H1 for the RX detector to produce a power that is comparable to that of the AsemiP 
detector corresponding to 5% of noise, (see Power CI for Noise (%) equals to 50 (RX) and for 
Noise (%) equals to 5 (AsemiP)).  In corresponding columns in table 1, notice also that it 
required a noise level between 400% and 500% under H1 for the RX detector to produce a unity 
power, but only a noise level above 100% for the AsemiP detector to achieve the same 
performance. 

Results shown in table 1, in essence, depict the detection approach that is more sensitive to 
material classes that are less separable in the HS space, a behavior that is desired.  Since the 
AsemiP detector consists of a data preprocessing step that aims at separating less separable 
classes, we attribute the performance shown in table 1 of the AsemiP approach less to its test 
statistic step but more to its data preprocessing step. 

The AsemiP test statistic step will be challenged in the simulation experiments described in 
section 3, where idealized heterogeneous samples (mixtures) will be used to simulate spatial 
transitions of distinct regions in HS data. In this case, the data preprocessing step of the AsemiP 
detector will not be of much help. 

Table 2 shows tabulated results of both detectors corresponding to Experiment 2. 

Recall that the goal of Experiment 2 is to determine which detector can yield higher power as a 
function of increasing asymmetric noise under H0, given that—by design—both detectors are 
able to confidently separate samples under H0 from those samples under H1 at zero noise.  

The PD or Power CI columns in table 2 for Noise (%) marked as * shows that both detectors can 
yield a unity power at zero noise under H0, which validates that H1 is indeed a relatively easy 
alternative, as expected.  Table 2 also shows that for a given type I error and sample size, the 
power of both detectors decreased, as expected, as a function of increasing noise under H0, and 
that the RX detector was able to maintain a significantly higher power than did the AsemiP 
detector as a function of increasing noise.  Notice, for instance, in table 2 that it required a noise 
level between 200% and 300% under H0 for the RX detector to decrease its power from unity.  In 
contrast, it required a mere noise level near 70% to decrease the AsemiP detector’s power from 
unity, (see Power CI for Noise (%) equals to 200 and 300 (RX) and for Noise (%) equals to 70 
(AsemiP)).  At noise levels between 200% and 300%, the AsemiP detector dropped its power to 
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about half of its peak; the same occurred for the RX detector at a much higher noise level—near 
500%, which is more favorable.  

We suspect that the same data preprocessing step that contributed to the favorable AsemiP 
detector’s power behavior shown in table 1 is also responsible for the unfavorable AsemiP 
detector’s power behavior shown in table 2.  The data preprocessing step in our approach was 
proposed to increase sensitivity between samples belonging to different classes that happen to 
have similar statistical features in the original data space.  In Experiment 2, this sensitivity 
backfired on the AsemiP power behavior, because, as a function of increasing asymmetric noise 
under H0, this detector’s cutoff threshold increased more significantly than the RX detector’s 
cutoff threshold did relative to their responses under H1. 

Results shown in table 2, in essence, depict the detection approach that is more sensitive to 
increasing asymmetric noise under H0, a behavior that is not desired.  Although Experiment 2 
symbolizes a specialized problem, this problem can actually happen in the target application, 
which is why we included it for testing.  

To relate a practical problem to the specialized concern described in Experiment 2, we must 
change our sampling approach for the detector’s training and testing stages.  We have used thus 
far the sampling approach known in the target community as inside/outside sampling for both 
training and testing, where a block of data in the HS imagery and this block’s surrounding data 
are used to form 1X  and 0X , respectively.  For the concern expressed in Experiment 2, we 
assume, instead, that pre-stored HS samples are available from a database to train a detector—
training is the process of obtaining a cutoff threshold, given a type I error and sample size. But to 
test incoming imagery, we assume that the inside/outside sampling approach is used to feed the 
detector with samples for power estimation. 

For training, suppose that random samples ( )
0
wX  and ( )

1
wX , as shown in (3), represent spectra 

from a real database, such that, 0X  depict random samples of a homogeneous background scene 
collected under a certain atmospheric condition aψ  belonging to a set of A possible conditions, 
or Aψψ ,,1 , and )(

1
wX  depict also random samples of the same homogeneous background scene 

under Aψψ ,,1 .  Assume now that )(
0
wX  and )(

1
wX  are used to obtain the detector’s cutoff 

threshold at a given type I error, such that, )(
0
wX  were collected under condition aψ  and )(

1
wX  

under condition ( )Acc ,,1=ψ .  In this context, conditions where ca ≠  can be modeled 
(simplistically) by adding asymmetric noise under H0, as shown in (3).  Higher effects between 

aψ  and cψ  on the same background scenes can be mimicked by increasing the noise level under 
H0. To complete this scenario, we would have to assume also that )(

0
wX  and )(

1
wX , as shown in 

(4), represent the case under H1 where )(
0
wX  are random samples from the same background 

scene used to obtain the detector’s cutoff threshold and )(
1

wX  are random samples of a genuine 
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anomalous material in the scene.  This practical scenario fits the concerned addressed in 
Experiment 2. 

A favorable comment on the AsemiP detector’s unfavorable performance shown in table 2 is that 
it required a relatively high noise level for this detector to show a significant power degradation, 
i.e., over 70%; see table 2. It was insightful to learn that the RX detector performed more 
favorably as the noise level increased beyond 50% in Experiment 2. 

2.4 Data Model Parameter Values 

For Experiment 1 and Experiment 2, we used 2,500 real spectral samples per material class to 
estimate these classes’ means and covariance matrixes.  Three material classes were chosen 
arbitrarily so that two of them were reasonably similar to each other, using both detectors’ low 
power responses as criteria, and the remaining one was very distinct from the other two. 

As discussed earlier, these classes’ estimated means are denoted by 0μ̂  (class 1) and 1μ̂  (class 
2)—both attained from two similar classes—and 2μ̂  (class 3)—the distinct class.  These classes’ 
estimated covariance matrices are denoted by 0Σ̂  (class 1), 1Σ̂  (class 2), and 2Σ̂  (class 3).  

The estimated covariance matrices of the three material classes are shown in figure 1, so that, 
one can visually appreciate the material radiance correlation among the 120 frequency bands by 
each material class.  Estimated means and estimated variances corresponding to the three classes 
are partially shown in table 3 (first 10 components only), for a complete table see appendix).   

            0Σ̂                                           1Σ̂                                        2Σ̂  

 

Figure 1. Estimated covariance matrices of class 1 ( )0Σ̂ , class 2 ( )1Σ̂ , and class 3 ( )2Σ̂ . The upper left corner  

of each matrix represents the response variance at frequency band 1—there are 120 bands. (These images 
were scaled independently using their own maximum and minimum values for displaying purposes only, 
such that, whitest represents the high value and black represents the lowest value.) 
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Table 3. (Partial Table) Estimated parameter values using real HS data from three arbitrarily chosen material 
classes, such that, two of these classes are relatively similar and the remaining one is distinct.  Estimated 
means 0μ̂  (class 1) and 1μ̂  (class 2) were attained from two similar classes, and estimated mean 2μ̂  

(class 3) was obtained from a distinct class.  Estimates ( )0Σ̂diag , ( )1Σ̂diag , and ( )2Σ̂diag  are the 

diagonal terms of 0Σ̂  , 1Σ̂ , and 2Σ̂ , respectively.  These vectors are 1 by 120 representing these 
statistical results from 120 frequency bands; see appendix for the complete table. 

 

ˆ 0μ   
(1.0e3) 

ˆ1μ   
(1.0e3) 

ˆ 2μ   
(1.0e3) 

( )ˆ 0diag Σ  

(1.0e3) 
( )ˆ1diag Σ  

(1.0e5) 
( )ˆ 2diag Σ  

(1.0e4) 
 
0.204325  
0.220555  
0.244355   
0.260325   
0.282800   
0.303000   
0.306015  
0.343840   
0.400310   
0.426200    

 
0.175925   
0.190895  
0.216750   
0.236395   
0.260630   
0.285110   
0.295890   
0.329070   
0.385030   
0.414335    

 
0.087980   
0.094050   
0.102410   
0.106035   
0.111530   
0.114955   
0.116005   
0.128410   
0.145650   
0.152510    

    
   0.160109 
   0.121826 
   0.138863 
   0.158180 
   0.172251 
   0.192190 
   0.155532 
   0.195692 
   0.229260 
   0.253849 
    

  
   0.004161 
   0.005398 
   0.007945 
   0.011452  
   0.016150 
   0.022174 
   0.028275 
   0.039375 
   0.063204 
   0.080857 
    

    
   0.011063 
   0.010110 
   0.012112 
   0.014576 
   0.015648 
   0.018835 
   0.018890 
   0.025303 
   0.033793 
   0.039194 
    

2.5 Concluding Remarks  

Section 2 focused on simulation experiments that showed relative strengths and weaknesses of 
two competing anomaly detection approaches, AsemiP and RX, testing idealized homogeneous 
sample models that included varying noise.  The section’s emphasis was on adding a so-called 
asymmetric noise to samples of a homogeneous class under the alternative hypothesis 
(Experiment 1) and under the null hypothesis (Experiment 2) in order to observe the power 
behavior (probability of correct detection) of both detectors.  Other cases involving mixtures are 
treated in section 3. Data models were specified and shared by these detectors representing H0 
and H1 in both experiments, where (differently from simulation experiments described in 
sections 3 and 4) real data were used to estimate parameters of idealized class distributions.  

Experiment 1 aimed at addressing a more generalized concern, that is, to determine which one of 
these detectors could sustain a higher power as a function of decreasing noise under H1, given 
that—by design—H1 (with zero noise) was a hard alternative consisting of generated idealized 
samples representing two similar homogeneous classes.  (Increasing noise in this context made 
these classes more separable.)  The AsemiP detector showed relative strength over the RX 
detector in Experiment 1, as shown in table 1.  We attribute the AsemiP’s favorable performance 
shown in table 1 to this detector’s data preprocessing step, which is an integral part of our 
anomaly detection approach.  In the target community, while data preprocessing techniques are 
designed to promote separation among similar classes in the original data space, these classes are 
assumed to be homogeneous.  However, if some of the observed samples belong to a mixture, 
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which is always the case in the target application, then one would have to rely on the test statistic 
step to handle the effect of mixtures on the detector’s power.  

Experiment 2 aimed at addressing a more specialized concern, that is, to determine which one of 
these detectors can sustain a higher power as a function of increasing noise under H0, given 
that—by design—H1 (with zero noise under H0) was an easy alternative consisting of generated 
idealized samples representing two distinct homogeneous classes.  The RX detector showed 
relative strength over the AsemiP detector in Experiment 2, as shown in table 2. This simulation 
experiment addresses a more specialized concern, but it could happen in the target application, as 
a special case, when samples of the same homogeneous class are collected under very distinct 
atmospheric conditions and these sample sets are then used later to represent the null hypothesis.  
The effect on the detector’s power owing to atmospheric condition disparities under the null 
hypothesis can be modeled in a simplistic form by adding random noise to one of the random 
samples in the sample pair used to train the detector.  Higher noise implies higher atmospheric 
condition disparity during data collection of the same homogenous class.  And the concern here 
is how this increase would affect the power of these detectors.  Of course, this simplistic model 
only used two homogenous classes between H0 and H1 and uncorrelated normally distributed 
noise, as shown in (3) and (4), but it was insightful to observe the responses of both detectors 
under this simulation scenario.  We suspect that the same sensitivity displayed by the AsemiP 
detector that produced the favorable results shown in table 1 is also responsible for this 
detector’s unfavorable results shown in table 2.  A favorable comment from the results shown in 
table 2 for the AsemiP detector is that it required a relatively high noise to show a significant 
degradation of its power from unity—70% of noise was required. 

In Experiment 1 and Experiment 2, we were primarily interested in presenting observable 
performance trends by these detectors as a function of systematically varying some parameter(s) 
in the models.  We have designed our simulation experiments using our best interpretation of 
problematic cases facing anomaly detection techniques in real applications requiring automatic 
decisions using remotely sensed HS data. 

3. Statistical Method Using Idealized Heterogeneous Multivariate Samples  

This simulation design imitates the situation encountered in decision based anomaly detection 
applications using HS or MS imagery, where a pair of multivariate sequences 0X  and 1X  is 
presented to a detector in order to determine whether they are statistically anomalous to each 
other.  

A fundamental problem with anomaly detectors, as discussed in the literature (see, for instance, 
(6)) is that they are not designed to handle mixtures of samples in a way that would be desired 
for their utility.  In particular, since the design of popular detectors are based on class 
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homogeneity, independently of how samples are compared in HS imagery (e.g., samples 
representing blocks of data may be compared to samples surrounding these blocks), it is 
expected that, while testing a typical HS imagery, an anomaly detector will face the challenge of 
comparing samples from a mixture of multiple classes to samples belonging to one of the classes 
in that mixture.  This challenge is widely ignored in the HS community, as noted in (6) using the 
expression corrupted samples, but its consequences cannot be ignored, as it will be demonstrated 
in this section.  

The challenge occurs because, in order to test HS imagery for scene anomalies, data block sizes 
are chosen to be orders of magnitude smaller than the total image area and, since the locations 
and scales of objects in the imagery are unknown, a systematic sampling approach is customarily 
used to test blocks of data across the entire image area.  A popular approach is to use a favorite 
anomaly detector to test overlapping data blocks of the same size against data surrounding each 
data block so that the entire spatial area of the imagery is tested.  Another approach is to use pre-
stored spectral data to test blocks of data across the imagery, where it is assumed that these pre-
stored spectral data represent only homogeneous background classes.  The criterion for selecting 
one approach over the other is the sensor’s viewing perspective with respect to the scene, but 
since the concerning challenge is essentially the same independently of the sampling approach, 
we will refer only to the most popular approach, as needed.   

Since typical HS data present different class regions across the imaged scene, spatial transitions 
among these classes are also expected in the data.  Therefore, if we consider a block of data 
representing a single class C1 and the data surrounding this block representing a mixture of 
classes (C1 and one or more additional classes), then, given that a block of data is normally 
orders of magnitude smaller than the total spatial area of the imagery, one would expect to 
observe a significant number of similar cases across the imagery.  The problem facing anomaly 
detectors then is a relative one.  Let Z1 be the outcome of a given detector at location (x1, y1) in 
a HS imagery when a block of data representing class C1 is compared to surrounding samples of 
a mixture that includes C1, and let Z2 be the outcome of this detector at location (x2, y2) when a 
block of data representing C2 is compared to surrounding samples representing class C3.  In this 
context, it would be desired to have Z2 >> Z1 (>> much greater than), since in the target 
community cutoff thresholds are attained empirically using, for instance, the method of quantile, 
and these thresholds will be influenced by the detector’s higher value responses for cases 
representing output Z1.  Existing anomaly detectors often produce Z2 < Z1, or Z2 << Z1, when 
exposed to this typical scenario.  The main focus in this report was to design anomaly detectors 
that can perform desirably (i.e., Z2 >> Z1) when confronted with these sorts of relative 
performances on real HS imagery. 

There have been some attempts (see, for instance, (9) and (10)) to model blocks of HS/MS data 
as mixture of densities, but they had very limited successes because these models assume 
normality of individual classes in the data and a prior knowledge of the maximum number of 
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classes in the block of data.  These methods are also cumbersome to implement because the 
proportion of each class in the mixture is unknown and must be estimated (10). 

The goal of this simulation is to use a standard statistical test to compare competing detectors 
and to relate results to what will be referred herein as desired and undesired behaviors of 
anomaly detectors.  Relating results to desired behavior or undesired behavior should shed some 
light on expectations of anomaly detectors’ performances in applications using real HS imagery. 

The data structure of 0X  and 1X  will be specified and shared by competing detectors, and 
specific null and alternative models will be specified as mixtures of multivariate normal 
distributions for windows of vector (multispectral, simplified to 5 dimensions) data.  

For simplicity, only two anomaly detectors will be compared, and for convenience we choose 
again to use the AsemiP detector and the industry standard RX detector, (see their mathematical 
representations in appendix).  Since the AsemiP method was proposed as a two-step approach, 
data preprocessing and test statistic.  An attempt will be made to separate performance results 
owing to the data preprocessing step and to the test statistic step.  The RX method, as mentioned 
earlier, was proposed as a single step approach—a multivariate test statistic. 

Using the denotation shown in section 1, we use in this simulation sample pair possibility 04H  to 
represent the entire null hypothesis 0H , and 13H  and 14H  in different experiments to represent 
the entire 1H .  Using 13H  as the alternative, and modeling CK+1 as C1 (see section 1) plus a bias 
term and a shape term, allow us to expose key sensitivity differences of both detectors and also 
to validate the effectiveness of our data preprocessing step.  

Using 14H  as the alternative, and systematically varying the contribution proportions of the 
classes in ( )1K321 C,C,C,CM +  under 1H  (in this case 14H ), allowed us to check the robustness of 
both detectors as a function of an alternative that became gradually harder for both detectors 
relative to the null hypothesis.  This latter simulation experiment measured the sensitivity of a 
test statistic when it receives as input samples of mixtures under both 0H  and 1H .  Since the 
AsemiP detector consists of two steps, data preprocessing and test statistic, it had to rely on its 
test statistic step to sustain a better power relative to the RX detector’s power, because data 
preprocessing techniques are proposed to promote separation of homogeneous classes that 
happen to be less separable in their original space. 

3.1 Data Structure and Representation of the Null/Alternative Hypotheses 

In this session, we describe data models whose samples will be generated and used as the 
detector’s input pair 0X  and 1X  in order to represent the null and alternative hypotheses.  

Null Hypothesis (H0): Fixing the number of classes in the mixture to 3, we use an idealized case 
for H0 where 0n  multivariate samples 

000201 ,,, nXXX  are drawn independently from a class 

mixture density )|(0 θXg , as shown in (5), and another 1n  samples 
111211 ,,, nXXX  are drawn 
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independently from a class-conditional normal probability density )|( 1θXg , such that )|( 1θXg  
represents one of the classes in )|(0 θXg  as follows: 

 ( )∑
=

=
3

1
0 |)|(

k
kkgg πθXθX , (5) 

where X  is a p-dimensional column vector, )|( kg θX  is a class-conditional normal PDF of 
unknown parameters kθ  ( )3,2,1=k , kθ  represents the kth parameter set having the p-dimensional 
mean vector kμ  and the p x p variance-covariance matrix kΣ , kπ  is the unknown proportion of 

class contribution to the mixture ( )∑ =
=
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1
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k kk ππ , and θ  is the full parameter set ( )321 ,, θθθ .  

Hypothesis H0, in the framework discussed in section 1 and in this section, corresponds to setting 
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where, mw ,,1=  indexes independent trials, ( )0
)(

0 ,,1 nuw
u =X  and ( )1

)(
1 ,,1 nhw
h =X  are B-

dim column vectors, and )(
0
wX  and )(

1
wX  are independent.  

To relate (6), for instance, to the top view anomaly detection problem, consider instead 
mw ,,1=  indexing independent spatial locations in the HS imagery, where model (6) would be 

reasonably satisfied, such that, )(
1

wX  would represent a reformatted block of data W1 (centered at 
w) and )(

0
wX  would represent reformatted data from W1’s outer ring W0.  (The term reformatted 

indicates that pixels representing a spatial area, e.g., a block, is represented as a sequence as 
shown in (5) from 1 to the maximum number of pixels within that spatial area.) 

In essence, H0 using (6) represents a detector being introduced to a multivariate sample 
belonging to a mixture of classes and a multivariate sample belonging to one of the classes in 
that mixture.   

Alternative Hypothesis (H1): In order to gain enough flexibility in H1, i.e., be able to use the 
same model to represent different levels of difficulty for this hypothesis, H1 will be represented 
by setting )(

0
wX  to the same mixture in (6) and, adding a 4th class to that mixture, by setting )(

1
wX  

to a new four-class mixture, or 
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where )(
0
wX  and )(

1
wX  are independent, mw ,,1=  indexes independent trials, ( )0

)(
0 ,,1 nuw

u =X  
was defined in equation 6, B-dim column vectors ( )1

)(
4 ,,1 nhw

h =X  are drawn independently 
from the class mixture density )|(1 θXg , such that all of the class component are normal 
densities as in (1), and that the normal density )|( 4θXg  does not represent one of the classes in 
the mixture density )|(0 θXg ; the parameter 4θ  represents ( )44 ,Σμ , where the B-dim vector 4μ  
is the unknown mean and the B x B matrix 4Σ  is the unknown covariance matrix of a normal 

multivariate distribution; the mixture proportions kρ  are defined such that 14

1
=∑ =k kρ . 

Hypothesis H1, using equation 7, then represents a detector being introduced to a multivariate 
sample belonging to a mixture of classes and to another multivariate sample belonging to that 
mixture plus an additional class.  Notice that the proportion parameters ( )4321 ,,, ρρρρ  will 
determine the level of difficulty imposed on the detector by H1 with respect to H0.  For instance, 
H1 would correspond to H0 by setting ( ) ( )0.0,0.0,0.0,0.1,,, 4321 =ρρρρ , and by using a small 
variation of this setting, e.g., ( ) ( )1.0,0.0,0.0,9.0,,, 4321 =ρρρρ  with ( )3,,1  4 =≠ kkμμ , H1 

would represent a hard alternative hypothesis for a detector to detect; alternatively, by setting 
( ) ( )0.1,0.0,0.0,0.0,,, 4321 =ρρρρ  with ( )3,,1  4 =≠ kkμμ , H1 would represent an easy 
alternative hypothesis using the same detector. 

3.2 Simulation Plan 

The following steps will be used in order to conduct the simulation experiments using the data 
model described in subsection 3.1:  

i. Setting sample sizes to be equal ( )10 nnn == , multivariate samples )(
0j
wX , )(

1j
wX , and )(

4j
wX  

( )nj ,,1= , as shown in (6) and (7), consist of covariates bp representing material 
radiances at p different frequency bands, where 51 ≤≤ p  in this simulation.  Covariates bp 
will be highly correlated by design in this simulation, which is the case for real HS 
imagery.  These covariates are pseudo values simulated every trial from multivariate 
normal distributions or mixture of these distributions, as shown in (6) and (7).  Parameter 
values for these distributions are not based on spectroscopy physics, since in real HS 
imagery Bp ≤≤1  and 5>>B .  Trials are indexed by w, where mw ,,1= , and the 
sample size n  is fixed to 500. 

ii. Since the industry standard RX detector assumes that its input sample pair is composed of 
IID multivariate normal samples of unknown means and unknown but equal covariance 
matrices, for this simulation we fix at once covariance matrices kΣ  ( )4,,1=k  to be equal 
to Σ , as shown in subsection 3.3.3, where the correlation parameters used in Σ  are all 
fixed to 1.0.  Values of the mean parameter vectors kμ  ( )3,,1=k  in the mixture density 
in the null hypothesis equation 6 and in the alternative hypothesis equation 7 are also fixed, 
as shown in subsection 3.3.3, while values of 4μ  in the alternative hypothesis and mixture 
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proportions ( )4,,1=kkρ  in equation 7 will vary as shown later.  For analysis purposes, 
the value of 4μ  is composed of three parts, or SB Δ+Δ+= μμ 4 , where μ  will be fixed, 
but BΔ  (a magnitude or bias vector term) and SΔ  (a shape vector term) will vary, see 
subsection 3.3.1 and subsection 3.3.3 for parameter settings and justification. 

iii. Attaining Cutoff Thresholds:  Setting ( ) ( )3.0,3.0,4.0,, 321 =πππ , once and for all, values 

of { }m

w
w

1
)(

0 =X  and { }m
w

w
1

)(
1 =X  (m = 1500) will be generated according to model  equation 6 

representing samples under the null hypothesis and introduced to both detectors.  Note that 
the setting of ( )3,,1=kkπ  in equations 6 or 7 is independent from the setting of 

( )4,,1=kkρ  in equation 7, see (v) in this subsection.  Both detectors will yield 1500 
output results each.  Each set of 1500 results will be used to estimate an empirical PDF, 
and a cutoff threshold will be attained using the standard quantile method on the estimated 
PDF.  The desired type I error probability ( )ε  for the quantile method is fixed at once for 
both detectors to 05.0=ε .   

iv. Estimating the Type I Error:  Additional values of { }m

w
w

1
)(

0 =X  and { }m
w

w
1

)(
1 =X  (m = 1500) will 

be generated according to (iii) and introduced to both detectors, where the detectors’ 
corresponding cutoff thresholds will be applied to the corresponding detectors’ output 
results in order to estimate the type I error ( )ε̂  of each detector.  The type I error is 
estimated by counting the number of trials 1m  that satisfy the detector’s output values 
being greater than the detector’s cutoff threshold and computing the ratio mm /ˆ 1=ε .  
(Additional samples will be generated for this step to ensure that the sample size is 
adequate for the estimation of ε .) 

v. Estimating the Power (1.0 – Type II Error):  Using ( ) ( )3.0,3.0,4.0,, 321 =πππ  and 
combinations of ( )4,,1=kkρ  and 4μ  (mean of the 4th class in the mixture shown in (7)), 

values of { }m
w

w
1

)(
0 =X  and { }m

w
w

1
)(

1 =X  (m = 1500) will be generated according to model (7) and 
introduced to both detectors, where the detectors’ corresponding cutoff thresholds will be 
applied to the corresponding detectors’ output results in order to estimate the power ( )θ̂  of 
each detector for a given set of combinations ( )4,,1=kkρ  and 4μ .  (Justification for the 
values of these combinations will be discussed later.)  The type II error is estimated by 
counting the number 2m  of trials that satisfy the detector’s output values being lower then 
the detector’s cutoff threshold and computing the ratio mm /2 , such that ( )mm /0.1ˆ

2−=θ .  

vi. Estimating Performance Confidence Intervals (CI):  Results from (iv) and (v) do not 
provide insights into the performance variability of the two detectors.  In order to check 

this variability, confidence intervals for (iv) ( )∑
=

−
−

±
R

r
rR

z
1

2
2/ ˆ

1
1 εεε α  and for (v) 
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( )∑
=
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−

±
R
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1
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2/
ˆ

1
1 θθθ α  will be estimated, where ( )2/11

2/ αα −Φ= −z  is the 2/1 α−  

quantile ( )05.0=α  of the standard normal distribution, random quantities simulated will be 

indexed by r for a total number of simulation repetitions R=2000, ∑
=

−=
R

r
rR

1

1 ε̂ε , and 

∑
=

−=
R

r
rR

1

1 θ̂θ . 

3.3 Simulation Results  

In order to separate subtle differences between the AsemiP anomaly detector and the RX 
anomaly detector, we decomposed the mean vector 4μ  (4th class in the alternative hypothesis) 
into three parts: a baseline vector μ , a bias vector BΔ , and a shape vector SΔ . The 4th-class 
mean vector then is represented by 

 SB Δ+Δ+= μμ 4 , (8)  

where 0; ≥
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S  (scalor), and μ  is fixed. 

Notice that BΔ  changes only the bias (also interpreted as magnitude) of μ  and SΔ  changes only 
the shape of μ . This decomposition will allow us to show the difference between desired and 
undesired performances of anomaly detectors through the influence of bias and shape of the 4th-
class mean vector in the alternative hypothesis equation 7.  

Justification for specifying parameter values: To show the effect of different combinations in 
our model’s high dimensional parameter space, we divided the exposition into two parts:  (a) to 
show the effect of spectral bias/shape in the power performances of both detectors and (b) to 
show the effect of a difficult H0 (class mixtures) in the power of these detectors as they test 
different complexity levels under H1 (easy, moderate, and hard) relative to H0.  

The criterion for exploring different parameter combinations will not be aimed at favoring one 
detector relative to the other, but instead at measuring power performance degradation of the 
AsemiP detector and observing the RX detector’s behavior.  In order to achieve this goal, we 
used arbitrary values for some of the parameters to initiate the process and followed with 
systematic selections of other parameters, as shown in subsection 3.3.1 and subsection 3.3.2.  
Subsection 3.3.1 discusses the effects of spectral bias/shape differences on both detectors, using 
the simulation plan outlined in subsection 3.2 for ( ) ( )3.0,3.0,4.0,, 321 =πππ  in equations 6 and 
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7, ( ) ( )0.1,0.0,0.0,0.0,,, 4321 =ρρρρ  in equation 7, 1μμ =  (see subsection 3.3.1) and three 
combinations of parameter values ( )sa, .  Subsection 3.3.2 discusses the effect of mixture 
proportions using the same simulation plan over eight combinations of parameter values 
( )4321 ,,, ρρρρ  and seven combinations of parameter values ( )sa,  for 1μμ = .  

3.3.1 Bias and Shape Influence in Detectors’ Performances  

This subsection contains results from an experiment using the simulation plan outlined in 
subsection 3.2 and fixing the values of 1μμ = , ( ) ( )3.0,3.0,4.0,, 321 =πππ , and 
( ) ( )0.1,0.0,0.0,0.0,,, 4321 =ρρρρ .  

Recall that the mean 1μ  and its relationship to 2μ  and 3μ  were chosen arbitrarily, although their 
general shapes follow the concave shape of typical (unprocessed) background spectra.  The 
parameters labeled as A, B, and C in (9) were chosen to show the performance difference of both 
detectors facing bias and/or shape differences under H1 so that we can discuss what is desired 
versus undesired behavior of these detectors in the context of our application using HS VNIR 
data.  

Table 4 shows the 95% confidence intervals (CI 95%) for the estimated type I error ( )Rrr 1ˆ =ε  
and estimated power ( )Rrr 1ˆ =θ  corresponding to both detectors for three combinations of 
parameter values ( )sa, : 

 ( ) ( ) ( ) ( )5,0     0,20     5,20,
C          B   A                         

=sa
. (9) 

The sample size was fixed to 500=n  and the total number of trials to 1500=m  as described in 
subsection 3.2 (i).  The total number of simulation repetitions was fixed to R=2000, and the 
desired type I error as described in subsection 3.2 (iii) was fixed to 05.0=ε .  The non-zero 
parameter choices in equation 9 reflect relative high differences (magnitude and/or shape) 
between 4μ  and 1μ . 

Results shown in table 4 shed some light on separating the contribution of the data preprocessing 
stage of the AsemiP approach from its test statistic, and they also help to determine whether the 
detectors’ performances are desired or undesired once related to the actual application.  

Notice in table 4 that the bias and shape of the 4th-class mean vector in the alternative hypothesis 
equation 7 do not interfere with the type I error estimates, as shown in the appropriate column in 
table 4 for both detectors, as it is expected since this class—using the parameter settings as 
shown in table 4—is not included in the null hypothesis equation 6.  
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Table 4. Illustration of bias and shape influence in the power of each detector (Det). Parameter (Par) 
combinations ( )sa,  labeled A, B, C according to the scheme of (5) are shown in the column under Par. 

 

 
( ) ( )

( ) ( )
       , ,       0.4,0.3,0.31 2 3

, , ,     0.0, 0.0, 0.0, 1.01 2 3 4

π π π

ρ ρ ρ ρ

=

=
 

 

500
1500
2000

1, ,
0.05

n
m
R
r R
ε

=
=
=
=
=

 

    Type I  ( )ˆ ; 95%CIrε       PD or  Power  ( )ˆ ; 95%CIrθ  

Det Par Lower Bound Upper Bound Lower Bound Upper Bound 
 

AsemiP 
 
 
 

RX 

 
A 
B 
C 
 

A 
B 
C 

 
0.049689992 
0.048396724 
0.048724038 

 
0.048546493 
0.048646478 
0.044824983 

 
0.054310007 
0.053763275 
0.053715961 

 
0.052733506 
0.052673521 
0.051990016 

 
1.000000000 
0.049344224 
1.000000000 

 
1.000000000 
1.000000000 
0.047146621 

 
1.000000000 
0.053815775 
1.000000000 

 
1.000000000 
1.000000000 
0.056852153 

 

On the other hand, for the 4th-class mixture proportion 0.14 =ρ , the parameter combination 
labeled A yields a sufficient separation between H0 and H1, allowing both detectors to 
demonstrate a perfect power using the simulation plan outlined in subsection 3.2, (see column 
under Power and row A for both detectors in table 4).  

Parameter combination labeled B completely removes the shape difference between 
( )n11211 ,,, XXX  and ( )n44241 ,,, XXX , (see equations 6 and 7), but preserves a significant bias 
between both samples.  Since the AsemiP data preprocessing step was designed to remove the 
influence of bias and preserve shape differences, the AsemiP anomaly detector cannot 
distinguish between the simulated sample pair in equation 6 and the simulated sample pair in 
equation 7.  Therefore, its CI corresponding to power is equivalent to its CI corresponding to 
type I error, as shown in table 4.  This performance behavior is, in fact, desired for anomaly 
detectors because, in the context of our application, robustness also implies that the response of a 
detector toward an imaged object should be invariant to changes in spectral magnitude.  For 
example, if the detector’s response to an object is invariant independently of whether this object 
is in shadow or outside shadow, in a cloudy day or in a sunny day, then this detector would be 
considered more robust than a competing detector that is sensitive to spectral magnitude changes 
imposed in the same object.  Paradoxically, HS anomaly detectors that are found in the 
engineering literature (see for instance, (6), (11)) are sensitive to spectral magnitude differences, 
including the industry standard detector (2), RX, see table 4, under label B and Power under the 
RX detector.  

Parameter combination labeled C, in the contrary, completely removes the bias (magnitude) 
while holding a significant shape difference between ( )n11211 ,,, XXX  and ( )n44241 ,,, XXX .  
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Since the AsemiP detector emphasis is on shape differences between multivariate samples, it 
yielded a perfect power, see table 4, while the RX detector failed to distinguish this important 
difference between sample pairs using model (6) and sample pairs using model (7), as this 
detector is sensitive only to spectral magnitude differences. The target community will be 
interested in seeing these results, which were made possible by decomposing the 4th class mean 
vector as shown in equation 8. 

The main impact of making a detection approach sensitive to spectral shape differences and 
insensitive to spectral magnitude differences is that of gaining robustness, e.g., gaining the 
ability to detect objects in different illumination conditions and most importantly under certain 
types of camouflaging materials.  For instance, materials composing sniper camouflage suits 
provide an average spectral magnitude that is comparable to the average spectral magnitude of 
natural canopy, but most of these camouflage suits have spectral shapes that are different from 
natural canopy in other regions of the spectrum outside the visible region—these findings were 
reported in (12).  A data preprocessing technique that can augment the detector’s sensitivity to 
spectral shape differences is then desired for certain types of camouflaged object detection 
applications. 

Unfortunately, the detector’s sensitivity to spectral shape differences and insensitivity to spectral 
magnitude differences are not sufficient to deal with an additional important issue that often 
prevents the desired effectiveness of an anomaly detection approach: the detector’s inability to 
deal with mixtures of spectral samples in HS imagery.  A detector that can deal with mixtures 
will be able to maintain cutoff thresholds relatively low under the challenging null hypothesis in 
equation 6, which is why we used a mixture of densities to conduct performance analyses via 
simulations in this document. Thus, to complement the benefit of using the AsemiP data 
preprocessing stage, we proposed the AsemiP test statistic to handle samples from mixture of 
densities.  Subsection 3.3.2 presents performance results of both detectors under changes of 
proportion parameters in the alternative hypothesis in (7) over a baseline combination set of 
( )sa, . 

3.3.2 Mixture Proportions’ Influence in Detectors’ Performances  

In this subsection, we aim at showing the benefit of using anomaly detectors that can maintain a 
relatively low cutoff threshold under the challenging null hypothesis in equation 6, as they test 
the alternative hypothesis in equation 7 for different parameter combinations.  This assessment 
can be made by recording the estimated power of these detectors, as the proportion of the 4th 
class in equation 7 varies from unity to smaller values.  Our conjecture is that a detector that 
yields a relatively low cutoff threshold from the null hypothesis in equation 6 will yield a 
superior power than otherwise for smaller proportions of the 4th class in the alternative 
hypothesis in equation 7.  

Since both anomaly detectors (RX and AsemiP) are sensitive to different spectral sample 
features (magnitude or shape), we will ignore in this part of the simulation whether the detectors’ 
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outcomes for the alternative hypothesis are desired or undesired, and calibrate instead their 
performances to a baseline, i.e., we will find a combination of parameters that will cause the 
detectors to perform about the same and name it: calibrated performances.  We explored various 
combinations of parameter values ( )sa,,,,, 4321 ρρρρ  and attained calibrated performances 
using parameter combination ( ) ( )0.1,0.0,0.0,0.0,,, 4321 =ρρρρ  and seven labeled combinations 
of ( )sa, :  

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )00.0,00.0     90.0,2.5     53.1,3.8     30.2,8.11,
A7                A6              A5                    A4                  

60.3,1.15     20.4,6.17     0.5,0.20,            
A3                   A2              A1                                

=

=

sa

sa
, (10) 

where, for the given parameter combination ( ) ( )0.1,0.0,0.0,0.0,,, 4321 =ρρρρ , the label 
combination A1 presents the easiest alternative hypothesis for both detectors to detect, and A7 
presents the hardest alternative hypothesis for both detectors.   

Parameters labeled as A1 through A7 in (10) and other parameters that led to the results 
presented in table 4 were chosen to show a gradual deterioration of both detectors (using the 
degradation of AsemiP as a reference, observe degradation of RX) and be marked as a calibrated 
benchmark of results so that we could precede showing further deterioration of these detectors’ 
performances as a function of mixture proportions ( )4,,1=kkρ  under H1 for a fixed mixture 
proportions ( )3,,1=kkπ  under H0. The ( )3,,1=kkπ  were arbitrarily set to be 
approximately equal to each other, and 4ρ  was gradually decreased (while the other 

( )3,,1=kkρ  were set approximately equal to each other satisfying the unity requirement 

0.1
4

1
=∑

= kk
ρ  in order to observe performance degradation of both detectors for different levels of 

complexities under H1. 

Performance results that were not shown in the document using different combinations of these 
parameters were discarded because they were either redundant or did not show significant 
differences from the results shown in the document. 

The results shown in table 5 are the calibrated performances.  Both detectors perform 
approximately the same using the simulation plan outlined in subsection 3.2 and parameter 
combinations shown in equation 6 for ( ) ( )0.1,0.0,0.0,0.0,,, 4321 =ρρρρ .  Tables 6 through 12 
show results using the same simulation plan and seven parameter combinations of 
( )4321 ,,, ρρρρ  over the seven labeled combinations according to scheme in equation 6.  Each 
table, from table 5 through table 12, corresponds to a fixed parameter combination of 
( )4321 ,,, ρρρρ  over the same seven labeled combinations of ( )sa, . 
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Table 5.  Detectors’ calibrated oerformances. 

 

 
( ) ( )

( ) ( )
       , ,       0.4,0.3,0.31 2 3

, , ,     0.0, 0.0, 0.0, 1.01 2 3 4

π π π

ρ ρ ρ ρ

=

=
 

 

500
1500
2000

1, ,
0.05

n
m
R
r R
ε

=
=
=
=
=

 

    Type I  ( )ˆ ; 95%CIrε        Power  ( )ˆ ; 95%CIrθ  

Det Par Lower Bound Upper Bound Lower Bound Upper Bound 
 

AsemiP 
 
 
 
 
 

 
 

RX 

 
A1 
A2 
A3 
A4 
A5 
A6 
A7 

 
A1 
A2 
A3 
A4 
A5 
A6 
A7 

 
0.049689992 
0.048649929 
0.047847406 
0.046972776 
0.047973420 
0.047019216 
0.047060977 

 
0.049315748 
0.047081616 
0.047855700 
0.049995794 
0.050133742 
0.049551476 
0.047149983 

 
0.054310007 
0.053230070 
0.052952593 
0.051427223 
0.052466579 
0.051540783 
0.051939022 

 
0.053444251 
0.052158383 
0.052984299 
0.054604205 
0.054546257 
0.053568523 
0.051530016 

 
1.000000000 
0.947422544 
0.764110188 
0.510582052 
0.286606531 
0.068192684 
0.046682036 

 
1.000000000 
0.842231671 
0.449845730 
0.256048622 
0.170833174 
0.071805233 
0.048550856 

 
1.000000000 
0.958537455 
0.782769811 
0.529857947 
0.300793468 
0.073687315 
0.051597963 

 
1.000000000 
0.916848328 
0.517754269 
0.279871377 
0.187046825 
0.080074766 
0.053129143 

 

Table 5 shows that the type I error CI estimates using both detectors included the desired type I 
error ( )05.0=ε , as expected.  The actual values of these detectors’ power performances shown 
in table 5 are unimportant, but what is important is the fact that they decrease gradually using 
labeled combinations A1 through A7.  Notice that the power performances of both detectors 
using Par A7 correspond in essence to these detectors’ type I error performances, since the shape 
difference and bias were removed from the 4th class mean vector, implying that the alternative 
hypothesis corresponds to the null hypothesis, or 14 μμ = , since 
( ) ( ).0.1,0.0,0.0,0.0,,, 4321 =ρρρρ  

Now, we will increase the difficulty level of the alternative hypothesis and measure its effect on 
these detectors.  The difficulty level can be increased by changing the values of ( )4321 ,,, ρρρρ .  
From table 6 to table 12, the parameter combinations ( )4321 ,,, ρρρρ  were set as follows: 

 
Table 6  –   ( ) ( )95.0,01.0,02.0,02.0,,, 4321 =ρρρρ , 

Table 7  –   ( ) ( )90.0,03.0,03.0,04.0,,, 4321 =ρρρρ ,   

Table 8  –   ( ) ( )80.0,06.0,07.0,07.0,,, 4321 =ρρρρ , 

Table 9  –   ( ) ( )60.0,13.0,13.0,14.0,,, 4321 =ρρρρ ,   
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Table 10  –   ( ) ( )40.0,20.0,20.0,20.0,,, 4321 =ρρρρ ,   

Table 11  –   ( ) ( )20.0,26.0,27.0,27.0,,, 4321 =ρρρρ ,  and  

Table 12  –   ( ) ( )05.0,31.0,32.0,32.0,,, 4321 =ρρρρ ,   

where these tables were organized, such that, for a fixed labeled combination (e.g., A4), the 
alternative hypothesis ranges from the easiest (see table 5) to the hardest (table 12), and, for all 
of the results presented in these tables, the parametric combination Par A1 in table 5 represents 
the absolute easiest alternative hypothesis in this simulation and Par A7 in table 12 represents 
the absolute hardest alternative hypothesis.    

The estimated type I error CI presented in table 5 for both detectors are replicated for table 6 
through table 12, since the parameter combinations ( )4321 ,,, ρρρρ  do not affect the type I error 
estimates.  The parameter changes shown in table 6 do not significantly affect the estimated 
power CI of both detectors, relative to their calibrated performances, as the contribution of the 
anomalous class (4th class, which is in H1 but not in H0) is still relatively high ( )95.04 =ρ .   

Table 6.  Performances using anomalous-class contribution 0.954ρ = . 

 
( ) ( )

( ) ( )
       , ,       0.4,0.3,0.31 2 3

, , ,     0.02, 0.02, 0.01, 0.951 2 3 4
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    Type I  ( )ˆ ; 95%CIrε        Power  ( )ˆ ; 95%CIrθ  

Det Par Lower Bound Upper Bound Lower Bound Upper Bound 
 

AsemiP 
 
 
 
 
 

 
 

RX 

 
A1 
A2 
A3 
A4 
A5 
A6 
A7 

 
A1 
A2 
A3 
A4 
A5 
A6 
A7 

 
0.049689992 
0.048649929 
0.047847406 
0.046972776 
0.047973420 
0.047019216 
0.047060977 

 
0.049315748 
0.047081616 
0.047855700 
0.049995794 
0.050133742 
0.049551476 
0.047149983 

 
0.054310007 
0.053230070 
0.052952593 
0.051427223 
0.052466579 
0.051540783 
0.051939022 

 
0.053444251 
0.052158383 
0.052984299 
0.054604205 
0.054546257 
0.053568523 
0.051530016 

 
1.000000000 
0.942281875 
0.751184110 
0.518196795 
0.287309548 
0.074645887 
0.053755197 

 
1.000000000 
0.825180772 
0.455990555 
0.263348966 
0.174690052 
0.074816120 
0.047682679 

 
1.000000000 
0.954998124 
0.770335889 
0.537163204 
0.302330451 
0.080154112 
0.058604802 

 
1.000000000 
0.903339227 
0.521049444 
0.290131033 
0.191149947 
0.082583879 
0.053237320 
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Table 7.  Performances using anomalous-class contribution 0.904ρ = . 
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    Type I  ( )ˆ ; 95%CIrε        Power  ( )ˆ ; 95%CIrθ  

Det Par Lower Bound Upper Bound Lower Bound Upper Bound 
 

AsemiP 
 
 
 
 
 

 
 

RX 

 
A1 
A2 
A3 
A4 
A5 
A6 
A7 

 
A1 
A2 
A3 
A4 
A5 
A6 
A7 

 
0.049689992 
0.048649929 
0.047847406 
0.046972776 
0.047973420 
0.047019216 
0.047060977 

 
0.049315748 
0.047081616 
0.047855700 
0.049995794 
0.050133742 
0.049551476 
0.047149983 

 
0.054310007 
0.053230070 
0.052952593 
0.051427223 
0.052466579 
0.051540783 
0.051939022 

 
0.053444251 
0.052158383 
0.052984299 
0.054604205 
0.054546257 
0.053568523 
0.051530016 

 
1.000000000 
0.854184598 
0.642609642 
0.408920288 
0.234175038 
0.066402824 
0.048011480 

 
0.075253189 
0.000000000 
0.000000000 
0.000000000 
0.000000000 
0.000000000 
0.000000000 

 
1.000000000 
0.872335401 
0.662750357 
0.427239711 
0.249224961 
0.072517175 
0.053188519 

 
0.080506810 
0.000000000 
0.000000000 
0.000000000 
0.000000000 
0.000000000 
0.000000000 

 

In tables 7 and 8, notice that the power of the AsemiP detector decreases noticeably relative to its 
calibrated power shown in table 5 for some of the labeled combinations in the Par column.  
Decreasing the proportion of the 4th class in the alternative hypothesis equation 7 from 1.0 to 0.9 
or 0.8 was sufficient to cause this degradation of the AsemiP detector; however, under Par A1 in 
tables 7 and 8, this detector shows that it can preserve its calibrated power performance.  The 
reason for this performance is that the AsemiP detector produces a relatively low cutoff threshold 
under the challenging null hypothesis in equation 4, relative to this detector’s response to weaker 
contributions—although still strong at 90.04 =ρ  or 80.04 =ρ —of the anomalous 4th class to the 
alternative hypothesis.   

For the RX detector, results in tables 7 and 8 show a significant degradation of its power, down 
to a virtual zero, as the parameter combination ( )4321 ,,, ρρρρ  changes from the one shown in 
table 5 to the ones shown in tables 7 and 8.  
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Table 8.  Performances using anomalous-class contribution 0.804ρ = .  

 
( ) ( )

( ) ( )
       , ,       0.4,0.3,0.31 2 3

, , ,     0.07, 0.07, 0.06, 0.801 2 3 4

π π π

ρ ρ ρ ρ

=

=
 

 

500
1500
2000

1, ,
0.05

n
m
R
r R
ε

=
=
=
=
=

 

    Type I  ( )ˆ ; 95%CIrε        Power  ( )ˆ ; 95%CIrθ  

Det Par Lower Bound Upper Bound Lower Bound Upper Bound 
 

AsemiP 
 
 
 
 
 
 

 
RX 
 
 

 
A1 
A2 
A3 
A4 
A5 
A6 
A7 

 
A1 
A2 
A3 
A4 
A5 
A6 
A7 

 
0.049689992 
0.048649929 
0.047847406 
0.046972776 
0.047973420 
0.047019216 
0.047060977 

 
0.049315748 
0.047081616 
0.047855700 
0.049995794 
0.050133742 
0.049551476 
0.047149983 

 
0.054310007 
0.053230070 
0.052952593 
0.051427223 
0.052466579 
0.051540783 
0.051939022 

 
0.053444251 
0.052158383 
0.052984299 
0.054604205 
0.054546257 
0.053568523 
0.051530016 

 
1.000000000 
0.718690650 
0.517011600 
0.330848485 
0.191038123 
0.061276485 
0.047990578 

 
0.000000000 
0.000000000 
0.000000000 
0.000000000 
0.000000000 
0.000000000 
0.000000000 

 
1.000000000 
0.736829349 
0.536228399 
0.346991514 
0.203401876 
0.066363514 
0.053209421 

 
0.000000000 
0.000000000 
0.000000000 
0.000000000 
0.000000000 
0.000000000 
0.000000000 

 

This degradation is dramatic owing to this detector’s inability to produce a cutoff threshold that 
is relatively low under the challenging null hypothesis in equation 6 with respect to this 
detector’s responses under the alternative hypothesis in equation 7 using the labeled parameter 
combinations shown in (10) and the class proportion combination 
( ) ( )90.0,03.0,03.0,04.0,,, 4321 =ρρρρ , or ( ) ( )80.0,06.0,07.0,07.0,,, 4321 =ρρρρ .  Tables 7 
and 8 show that the RX detector is too sensitive under H0.   

For the anomalous 4th class contributions decreasing even further, tables 9 through 12 present the 
power degradation of the AsemiP detector, as the alternative hypothesis overlaps significantly 
more into the null hypothesis, especially for parameter combinations A2 through A5.  Under a 
high shape difference (A1), the AsemiP detector could hold power to its corresponding calibrated 
performance, including for parameter combination ( ) ( )20.0,26.0,27.0,27.0    ,,, 4321 =ρρρρ , 
which in essence shows this detector’s relatively low sensitivity under H0, under which the cutoff 
threshold was attained from, and relatively high sensitivity to the 4th class’ 20% contribution of 
shape difference from the null hypothesis’ 1st class.  This behavior is owed to the data 
preprocessing step and to the AsemiP test statistic’s ability to hold the cutoff threshold relatively 
low under the null hypothesis.  Further power deterioration of the AsemiP detector is observed in 
table 12. 
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The RX detector’s performances using parameter settings, as shown in tables 9 through 12, were 
unchanged relative to its performance shown in table 8, hence, those results were not included in 
tables 9 through 12.  The RX detector’s relatively high sensitivity under H0 is responsible for this 
detector’s degraded performances. 

Table 9.  Performances using anomalous-class contribution 0.604ρ = . 
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A7 

 
0.049689992 
0.048649929 
0.047847406 
0.046972776 
0.047973420 
0.047019216 
0.047060977 

 
0.054310007 
0.053230070 
0.052952593 
0.051427223 
0.052466579 
0.051540783 
0.051939022 

 
1.000000000 
0.409792374 
0.285322165 
0.188144397 
0.123314105 
0.057298891 
0.047194843 

 
1.000000000 
0.427767625 
0.300317834 
0.199695602 
0.132245894 
0.062181108 
0.052365156 

 

Table 10.  Performances using anomalous-class contribution 0.404ρ = . 
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0.051427223 
0.052466579 
0.051540783 
0.051939022 

 
1.000000000 
0.194112671 
0.143623596 
0.104153482 
0.078379089 
0.052904455 
0.048669129 

 
1.000000000 
0.206447328 
0.152816403 
0.111926517 
0.084820910 
0.058015544 
0.053450870 
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Table 11.  Performances using anomalous-class contribution 0.204ρ = . 
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0.047973420 
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0.047060977 

 
0.054310007 
0.053230070 
0.052952593 
0.051427223 
0.052466579 
0.051540783 
0.051939022 

 
1.000000000 
0.078764146 
0.068028364 
0.060796030 
0.056403217 
0.048726758 
0.049206628 

 
1.000000000 
0.084755853 
0.073491636 
0.066163969 
0.060676782 
0.053753247 
0.054313371 

 

Table 12.  Performances using anomalous-class contribution 0.054ρ = . 
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0.048649929 
0.047847406 
0.046972776 
0.047973420 
0.047019216 
0.047060977 

 
0.054310007 
0.053230070 
0.052952593 
0.051427223 
0.052466579 
0.051540783 
0.051939022 

 
0.272279737 
0.049244815 
0.049208689 
0.048885476 
0.048577670 
0.045402912 
0.048428880 

 
0.289680262 
0.053755184 
0.054351310 
0.053274523 
0.052662329 
0.049197087 
0.053051119 

 
Results presented in tables 5 through 12 depict detectors’ robustness as a function of increased 
complexity under H1. In this simulation, the complexity level under H1 can be significantly 
increased by gradually decreasing    4ρ  and adjusting ,, 21 ρρ and 3ρ , accordingly.  Following 
this approach is equivalent to assessing the detector’s ability to maintain a rather uniformly low 
cutoff threshold, and our conjecture is that, using this approach for comparison, better performers 
will produce better power. 

Table 5 shows results from smaller disparities between H0 and H1, using 
( ) ( )0.1,0.0,0.0,0.0,,, 4321 =ρρρρ  and parameter combinations A1, A2,…, A7.  Tables 6 
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through 12 show additional results for the reader to assess the robustness of both detectors as a 
function of A1,…,A7 and increased complexity under H1.  

Results in those tables show that the competing RX detector is not as robust as that of our 
favorite AsemiP detector as they test difficult alternative hypothesis, and these results are 
consistent with results obtained by testing these detectors on real HS imagery for the application 
discussed in this application.  

3.3.3 Data Model Parameter Values and Justification    

The mean vector of class 1 ( )1μ  was chosen to form a concave shape, which resembles the 
response of natural terrain in the visible to near infrared region of the spectrum. (The covariate 
values in this mean were arbitrarily chosen.)  The mean vector of class 2 ( )2μ  and the mean 
vector of class 3 ( )3μ  are offsets of ( )1μ , or 

 1 2 1 3 1 2 3

10 10 20 20 30
60 10 20 70 80
100 ;     10 ;     20 ;    110 ;     120 . 
80 10 20 90 100
30 10 20 40 50
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We fixed at once the values of ( ) 1, , 4ii = =Σ Σ , where   
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⎢
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⎢
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⎢

⎣

⎡

=

0000.101421.140000.201421.140000.10
1421.140000.202843.280000.201421.14
0000.202843.280000.402843.280000.20
1421.140000.202843.280000.201421.14
000.101421.140000.201421.140000.10

Σ ; 

for simplicity, all of the correlations imbedded in Σ  are all equal to 1.0, and the variances 
shown in the diagonal of  Σ  were chosen arbitrarily, although their values have a general trend 
observed in MS or HS data—variability of natural clutter background in the visible to near 
infrared region of the spectrum tends to increase toward the frequency band center and to 
decrease thereafter. 

We decomposed the mean vector 4μ  (4th class in the alternative hypothesis) into three parts: a 
baseline vector μ , a bias vector BΔ , and a shape vector SΔ . The 4th-class mean vector then is 

represented by SB Δ+Δ+= μμ4 , where [ ] 0; ≥=Δ aaaaaa t
B  (scalor), 

[ ] 0; ≥−−=Δ ssssss t
B  (scalor), and μ  was fixed at once to 1μμ = . 
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Notice that, by setting 1μμ = , BΔ  changes only the bias (also interpreted as magnitude) of 1μ , 
and SΔ  changes only the shape of 1μ . This decomposition allows us to show the difference 
between desired and undesired performances of anomaly detectors through the influence of bias 
and shape of the 4th-class mean vector in the alternative hypothesis equation 7. 

3.4 Concluding Remarks 

This section focused on analyzing the effect of idealized sample mixtures on performances of 
two distinct anomaly detection techniques.  As in section 2, the AsemiP detector and the RX 
detector were chosen for this section.  The AsemiP detector consists of two steps, data 
preprocessing and univariate test statistic.  The RX detector was proposed as a single step 
multivariate test statistic, which is also the case for alternative anomaly detection techniques in 
the literature.  Data models were specified and shared by both detectors representing null and 
alternative hypotheses.  Simulated samples were generated according to the models, and a 
standard statistical test was used to compare detectors’ performances as a function of varying 
parameters.  

The RX technique showed high sensitivity to a challenging null hypothesis that is found in real 
HS data (involving samples of a mixture and samples of a class belonging to that mixture), and 
showed also high sensitivity to magnitude (bias) differences among generated multivariate 
samples; both are highly undesirable sensitivities for anomaly detection applications because this 
detector’s power does depend on the detector’s null-hypothesis based cutoff threshold and on the 
illumination (which influences spectral magnitude) on objects in the scene.  

The AsemiP technique, on the other hand, showed significantly less sensitivity to the same null 
hypothesis (owing to its data-combining test statistic), and insensitivity to magnitude differences 
between multivariate samples (owing to its data preprocessing step).  The proposed data 
preprocessing step also promotes a higher sensitivity of the front-end test statistic to spectral 
shape differences between multivariate samples.  

The results shown in table 4, in essence, verified a desired goal by the AsemiP detector’s 
developer of removing spectral magnitude (bias) differences among spectra through data 
preprocessing.  Table 4 showed two surprising outcomes: first, high effectiveness of the AsemiP 
data preprocessing step removing bias differences, which prompted the results produced by the 
AsemiP test statistic step shown in table 4; and, second, high insensitiveness of the RX detector 
to shape differences among spectra, which is undesired using HS VNIR data, but possibly 
desired in other regions of the spectrum (e.g., HS LWIR data).  

A key point to notice in the sequence of tables after table 4 is that even if sensitivity to spectral 
bias were desired, RX showed lack of robustness testing harder alternative hypotheses.  Results 
presented in table 5 show calibrated power of both detectors for parameter combinations A1-A7, 
while tables 6 through 12 show deterioration of power of both detectors, as a function of A1-A7 
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and increased complexity under H1, relative to the detectors’ corresponding (calibrated) power 
shown in table 5. 

Given the results shown in table 4, it is worth noting that if spectral magnitude difference turns 
out to be an important feature for effective anomaly detection outside the VNIR region of the 
spectrum, the developers of the AsemiP detector would have to consider a different data 
preprocessing technique and continue to use a robust test statistic (e.g., AsemiP).  

Results presented in tables 5 through 12 depict detectors’ robustness as a function of increased 
complexity under H1. In this simulation, the complexity level under H1 can be significantly 
increased by gradually decreasing    4ρ and adjusting ,, 21 ρρ and 3ρ , accordingly.  Following 
this approach is equivalent to assessing the detector’s ability to maintain a rather uniformly low 
cutoff threshold, and our conjecture is that, using this approach for comparison, better performers 
will produce better power. 

Table 5 shows results from smaller disparities between H0 and H1, using 
( ) ( )0.1,0.0,0.0,0.0,,, 4321 =ρρρρ  and parameter combinations A1, A2,…, A7.  Tables 6 
through 12 show additional results for the reader to assess the robustness of both detectors as a 
function of A1,…,A7 and increased complexity under H1.  

Results in those tables show that the AsemiP detector is more robust than the RX detector as they 
test difficult alternative hypothesis.  These results are consistent with results obtained by testing 
these detectors on real HS imagery for the application discussed in this application.  

4. Statistical Method Using Idealized Multivariate Cubes  

This simulation design imitates the situation encountered in decision based anomaly detection 
applications using HS or MS imagery, where a pair of multivariate sequences 0X  and 1X  is 
presented to a detector in order to determine whether they are statistically anomalous to each 
other.  

In this section, we seek to demonstrate, under controlled top-view background configuration 
scenarios, the differences in performances among different anomaly detection approaches using 
idealized data.  

The simulation experiments discussed in section 2 (which used idealized homogeneous samples) 
and section 3 (which used idealized sample mixture) differs from the simulation experiment 
discussed in this section, while uses idealized pseudo cubes representing smaller versions of real 
HS (cubes) imagery.  The main goal in this section is to assess the power (correct probability of 
detection, PD) of competing anomaly detectors as they test idealized multivariate imagery, and 
to use a standard statistical method to assess their power estimates at given type I errors and 
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equal sample size.  To achieve this goal, we start by generating a large number of idealized 
training cubes using three different background configurations, and test these cubes with the 
various anomaly detectors so that cutoff thresholds and type I errors can be estimated from these 
detectors’ output surfaces.  (Each pixel in a given output surface corresponds to a trial outcome 
using the corresponding detector.)  We then generate another large set of idealized test cubes 
using the same three background configurations and added targets and test these cubes using the 
same detectors and their corresponding cutoff thresholds so that their powers can be estimated 
from their output surfaces.  Tabulated results and ROC curves will be shown for this simulation 
experiment. 

Anomaly detection approaches that can maintain a relatively low cutoff threshold using idealized 
realizations of increasingly more complex background configurations will produce better 
power—this is our conjecture.  For this expectation to be true, desired anomaly detection 
approaches would have to be less sensitive to local background configurations relative to 
competing approaches. 

The detectors chosen for this simulation are three univariate detectors (AsemiP, AFT, and AVT) 
and five alternative detectors (ANOVA, RX, FLD, EST, and DPC).  These detectors’ 
mathematical formulations are shown in the appendix. 

This simulation is designed to estimate detectors’ performances over a rather large number of 
experiment trials.  

4.1 Problem Formulation 

Let B1, B2, and B3 represent three simulated multispectral cubes of increasing background 
complexity having the same size r x c x b, where r is the number of rows, c is the number of 
columns, and b is the number of spectral bands. Let B1 consist of highly correlated multivariate 
random samples of a single homogeneous class C1, and B2 and B3 consist of equally highly 
correlated multivariate random samples of multiple homogeneous classes Ck (k = 1, …, nc), 
where these classes form different stripe patterns between B2 and B3, see figure 2.  (Statistical 
details on these classes are presented later). 

The configuration of the backgrounds in B1, B2, and B3 are purposively formed so that the null 
hypothesis become more difficult for detectors to keep a relatively low cutoff threshold, where 
B1 represents an easy background configuration, B2 represents a moderately difficult 
configuration, and B3 represents the most difficult configuration. 

Now consider the inside-outside window sampling mechanism described section 1 and depicted 
in figure 2 as dotted boxes at specific positions labeled as a through l, separating the local area 
into two regions—the inner window region (Win or W0) and the outer window region (Wout or 
W1)—sliding concentrically across the area r x c in each simulated cube, such that, at each 
discrete position in the imagery, multivariate vector samples [ ]tx pbppp xxx 020100 ,,,=  (p = 1, 
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… n0) that are viewed within Wout will be compared in some form to multivariate vector samples 
[ ]tx qbqqq xxx 121111 ,,,=  (q = 1, … n1) that are viewed within Win.  The size of the dual 

window is set such that the Win encloses a target sized region and the Wout includes its 
surrounding region.  If the dual window is placed within a spatially homogeneous region 
consisting of similar types of materials, such as natural backgrounds, the statistical 
characteristics of samples that are observed within Win and Wout will be similar to each other.  
Samples within Win and Wout will contain significantly different statistical features if the dual 
window is centered on a region where a target, for instance, is surrounded by its local 
background.  Use of appropriate cutoff thresholds on anomaly detectors’ outputs would allow 
most targets to be detected as local anomalies. 

A proportionally sized dual rectangular window with respect to the cubes’ sizes is shown at 
different positions on B2, and B3, (see figure 2 (top)).  Depending on the detection technique 
being used, these multivariate samples p0x  and q1x  will be transformed (preprocessed) into two 

sequences ( )
0002010   ,    ,  , nyyyy =  and ( )

0112111   ,    ,  , nyyyy =  for comparison.  (Notice 

that both sequences have the same size, i.e., n0, which is independent of n1.  Details on this 
transformation are discussed in appendix.) 

The main objective in this simulation is twofold: (i) to apply the detectors on background-only 
imagery in order to obtain critical values (cutoff thresholds)—these background only data will be 
referred to in this document as training cubes, and (ii) to test a large number of simulated data 
using these critical values in order to estimate confidence intervals for type I and type II errors—
simulated data mentioned in this fold will be referred to as test cubes.  To obtain these critical 
values, detectors will test realizations of B1, B2, and B3 and have their output surfaces results 
sliced to form binary images, where the number of pixel values above slicing thresholds can be 
used to yield predetermined error probabilities—in this case, type I errors.  A single critical value 
will be dependent on three factors:  the dual window size, which will be constant; the specific 
detector being applied; and the requested type I error.  To estimate error confidence intervals, a 
large number of B1, B2, and B3 will be realized, targets will be added in these cubes, and these 
target-background simulated data will be tested using the different detectors and their 
corresponding background specific critical values.  Simulated cubes that include targets Tw 
(w=1,..., nt), or testing cubes, will be denoted by BT1, BT2, BT3, and BT4 corresponding to 
backgrounds B1, B2, and B3, respectively.  (Notice that both BT3, and BT4 have the same 
background B3.)  Targets are represented by t x t spatial areas consisting of multivariate random 
samples that are significantly different from their surrounding backgrounds (see figures 2 and 3). 

Using the denotations introduced in this subsection, we conjecture that anomaly detection 
approaches that can maintain a relatively low cutoff threshold using idealized realizations of B1, 
B2, and B3, as input imagery, will produce better power.  For this expectation to be true, desired 
anomaly detection approaches would have to be less sensitive to local background configurations 
relative to competing approaches.  
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4.2 Simulation Plan and Multivariate Cube Structures 

In this subsection, we provide a simulation plan and describe the structures of data cubes, which 
will be used to carry out the simulation experiment described herein.  We start by describing the 
up level simulation plan and then follow it with the details pertained to the constructions of 
idealized pseudo imagery (data cubes).   

4.2.1 Simulation Plan 

The following steps were used to conduct the simulation experiments using the data model 
specified in subsection 4.2.2 through subsection 4.2.3:  

i. Since HS or MS imagery can be interpreted as a set of 2-dim images (pixel co-registered) 
collected at different frequency bands forming a cube, two sets of idealized cubes will be 
generated: training ( )

h
gB   and testing ( )g

zBT  (sometimes a test cube may be referred to as 
( )gzBT ), where ( )

h
gB  and ( )g

zBT  have volume r x c x b, r x c = 256 x 256 represents the 

total spatial area of a scene and b = 5 represents the total number of spectral bands, 
1, ,3h =  indexes different kinds of training background configurations, 1, , 4z =  

indexes different kinds of target-background configurations, and 1, ,1500g =  indexes 
independent repetition. 

ii. Training cubes ( )
h
gB , which is under the null hypothesis, will be constructed by 

generating independent, identically distributed (i.i.d.) multivariate samples of background 

classes ( , , )
k
g i jC , or { }( ) ( , , )

h k 1 1

crg g i j
i j= =

⎧ ⎫
= ⎨ ⎬
⎩ ⎭

B C , where ( ),i j  indexes a spatial (pixel) 

location in ( )
h
gB  and 1, 6k =  indexes a particular background class (a distribution, 

which will be specified later; i.i.d. samples will be generated from single classes, and the 
samples are independent between the classes).  A particular kind of background 
configuration can be attained by determining where samples of similar or different 
classes are placed with respect to each other throughout the imagery spatial area, as it will 
be shown later.  In order to mimick a known characteristic of real MS imagery, each 
sample ( , , )

k
g i jC  will consist of 5 highly correlated covariates.  These covariates are 

pseudo values generated from multivariate normal distributions, as will be shown later. 

 Parameter specifications for these distributions are not based on real material 
spectroscopy, since we do not have meaningful MS imagery and the HS imagery that we 
have has the number of bands equal to or greater than 120, which is much greater than 
5—computational time made us settle for 5 rather than a larger number.  Parameter 
specification will be made to make sure that each one of the 6 classes in the background 
is significantly different from the other classes.  
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iii. Cubes ( )g
zBT , which is under the alternative hypothesis, will be constructed by first 

generating independent realizations of ( )
h
gB , as described in (ii), and then by replacing 

some (a few) of the background samples ( , , )
k
g i jC  with i.i.d. multivariate samples of 

target classes ( , , )g y xTw , where 1, ,5w =  indexes different target classes (target classes 

will be also significantly different from any one of the background classes) and (x,y) 
indexes predetermined spatial locations where theses targets will be placed in ( )g

zBT , as 
it will be shown later.  (The term predetermined means that the locations where targets 
are found are stored so that we can determine later whether a detection is a correct one or 
a false positive.)  Target class samples are independently generated for each location 
where they replace background class samples.  This process is repeated 1, ,1500g =  
times.  

 In this simulation experiment, ( )
1

gBT  will use the background configuration of ( )
1

gB , 
( )
2

gBT  will use the background configuration of ( )
2
gB , ( )

3
gBT , and ( )

4
gBT will use the 

background configuration of ( )
3

gBT .  The number of targets and their locations in the 

scene background are the same for ( )
1

gBT  and ( )
2
gB , but different from the ones in 

( )
3

gBT  and ( )
4

gBT .  Target locations were selected to challenge corresponding anomaly 

detectors with respect to the complexity of background configuration, target spatial area, 
and testing window area, as it will be shown later.  

iv A detector will produce multiple results testing a cube because it only tests an area at a 
time, and this area is orders of magnitude smaller than the entire image area of that cube.  

 A detector trial in this simulation experiment corresponds to comparing samples 
representing a block of data in the imagery to samples representing data in the outer ring 
of this block of data. If we denote 1X  as a sequence 11, ,n  of multivariate samples 

observed in a block of data and 0X  as a sequence 01, ,n  of multivariate samples 

observed in this block’s outer ring, then comparing 1X  to 0X  represents a trial. Samples 

1X  and 0X  will be shared by all the detectors used in this simulation experiment. 

 Making similar comparisons across the entire imagery for overlapping blocks of data 
produce multiple trial results.  From these results a cutoff threshold, type I error or power 
of the test can be estimated for the given detector, depending on whether it is a training or 
testing activity.  

 Attaining cutoff thresholds and estimating type I errors will be done during a training 
activity using training idealized cubes, and the power of the test will be estimated during 
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testing activities using testing idealized cubes.  Sample sizes 1n  and 0n , which depends 
on the sizes of the inside window and outside window, respectively, are fixed at once to 

1 81n =  (from a 9 x 9 area) and 0 208n =  (from a extension of 4 pixels beyond the 9 x 9 
block). 

 Note that depending on which cube (imagery) is used and where in the imagery the block 
of data is located, 1X  and/or 0X  may have pure or mixtures of background samples kC  
and/or target samples Tw , see figure 2.   

v. Since the industry standard RX detector assumes that 1X  and 0X  are composed of i.i.d. 
multivariate normal samples of unknown means and unknown but equal covariance 
matrices, for this simulation we fix at once covariance matrices of different background 
classes to Σ  (see subsection 4.2.2), and fixed at once covariance matrices of different 
target classes to Ξ  (see subsection 4.2.3), where the correlation parameters in this given 
covariance are all fixed to 1.0. 

vi. Attaining Cutoff Thresholds:  A training cube will be generated as described in (ii) and 
tested using a detector as described in (iv).  This procedure will produce 57,121 trial 
results [(r – 17) x (c – 17) = (256 – 17) x (256 – 17)] for each detector.  Each set of 
57,121 trial results will be used to estimate an empirical PDF, and a cutoff threshold will 
be attained using the standard quantile method on the estimated PDF.  The desired type I 
error probability ( )tα  for the quantile method will vary, where 1, , 4t =  indexes a set 

of type I error probabilities. In this simulation, we will use 
1 2 3 4

1 2 3 410 , 10 , 10 , 10 .α α α α− − − −= = = =     

vii. Estimating the Type I Error:  An additional training cube will be generated according to 
(ii) and introduced to each detector, where the detector’s corresponding cutoff threshold 
will be applied to the corresponding detector’s output trial results in order to estimate the 
type I error ( )ˆ g

tα  of each detector for a given repetition g.  The type I error is estimated 

by counting the number of trials ( )
1

gm  that satisfy the detector’s output values being 

greater than the corresponding detector’s cutoff threshold ( )g
tε  and computing the ratio 

( ) ( )
1ˆ /g g

t m mα = ,  where m = 57,121.  (Notice that m is sufficiently large for the 

estimation of the lowest type I error probability 4
4 10α −= .)  

viii. Estimating the Power (1.0 – Type II Error):  A test cube will be generated according to 
(iii) and introduced to each detector, where each detector’s corresponding cutoff 
threshold will be applied to the corresponding detector’s output results in order to 
estimate the power )(ˆ g

tβ  for a given repetition g.  The type II error is estimated by 
counting the number )(

2
gm  of trials that satisfy the detector’s output values being lower 



 

 41  

then the corresponding detector’s cutoff threshold )( g
tε , and satisfy also that the trial 

location in the test cube corresponds to the location of a target sample (recall that the 
inserted locations of target samples will be stored).  The type II error then can be 
estimated by computing the ratio 3

)(
2 / mm g , such that  power ( )3

)(
2

)( /0.1ˆ mm gg
t −=β , 

where 3m  is the total number of target samples that is present in the test cube, which will 
be known for each test cube.  

Training Cube  1B                   Training Cube  2B             Training Cube  3B  

 

Testing Cube  1BT          Testing Cube  2BT        Testing Cube  3BT  

Figure 2. Training cubes 1B , 2B , and 3B , shown as the average of five planes, were used to obtain cutoff 
thresholds for multiple simulated realizations of cubes 1BT , 2BT , and 3BT , also shown as the average 
of five planes, for testing.  The dotted boxes show approximately the size of a dual rectangular window 
in proportion to targets’ size, background stripes’ sizes, and cubes’ size.  Targets are labeled according 
to their statistical characteristics—discussed in text.  Notice that depending on the window’s position 
in a cube, outside window samples of 1 to 3 classes may be compared to inside window samples of a 
single class—see, for instance, positions d and h. Different background classes are denoted by different 
labels, e.g., 1C .     
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ix. Estimating Performance Confidence Intervals (CI):  In order to check variability using 

results from (vii) and (viii), confidence intervals for (vii) ( )∑
=

−
−
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4.2.2 Clutter Background Cube Structures  (B1, B2, and B3)  

This subsection presents the in-depth description of construction of idealized training imagery 
(pseudo cubes).  In addition to parameter specifications, the information contained in this 
subsection and in follow-on subsections includes computer programming perspective details for 
estimating power of detectors and other metrics discussed in this subsection.  

As discussed in subsection 2.1, a background (training) cube indexed by h is denoted by 

{ }{ }c
j

r
i

jigg
h 11

),,(
k

)(
=== CB , where ),,(

k
jigC  is a 5-dim column vector,  6,,1=k  indexes different 

background classes, (i,j) indexes the spatial location in the r x c area of the cube, and g indexes 
the repetition number.  For convenience, the indexes (i,j) and g will be dropped for the 
discussions that follow.  

Background cube 1B  consists of i.i.d. multivariate samples of a single class and was constructed 
using highly correlated, normally distributed multivariate samples; a sample 1C  from this class is 
specified as follows 

 ( )1 1~ ,C N μ Σ , (11) 

where,  
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1B  was constructed to form a volume of 256 x 256 x 5 using simulated realizations of 1C .  For 
simplicity, the correlations imbedded in Σ  were all equal to 1, and the variances are of course 
the diagonal values in Σ .     

Background cube 2B  consists of six classes, and multivariate samples ,,,,, 54321 CCCCC and 6C  
from these classes are specified as follows  
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where, 1μ  and Σ  are defined in equation 11 and  
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Background cube 2B  was also constructed to form a total volume of 256 x 256 x 5 using 
simulated realizations of these six classes, such that, each class covered a sub-volume of 256 x 
42 x 5, as shown in figure 2.   

Background cube 3B  was constructed to form a total volume of 256 x 256 x 5 using simulated 
realizations of the same six classes in 2B , but it displays very different spatial configurations 
from those in 2B .  In reference to figure 2 and denoting i1 and i2 as the start column and end 
column, respectively, 1C  in 3B  covered columns i1 = 1 to i2 = 40, having horizontal extensions 
of two sizes (9 x 18) and (9 x 27) located at rows (10, 30, 50, 70, 90, 110, 130, 150, 170, 190, 
210, and 230) for a total of 12 horizontal extensions of 1C , see 3B  in figure 2; 2C  covered 

columns i1 = 41 to i2 = 109; 3C  covered columns i1 = 110 to i2 = 118; 4C  covered columns i1 

= 119 to i2 = 127; 1C , being used again, covered columns i1 = 128 to i2 = 166; 2C , being used 

again, covered columns i1 = 129 to i2 = 205; 5C  covered columns i1 = 206 to i2 = 214; 6C  
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covered columns i1 = 215 to i2 = 223; 2C , being used again, covered columns i1 = 224 to i2 = 
256. 

The column widths of classes ,,, 543 CCC and 6C  in 3B  were chosen to match the column width 
of Win (inside window), see figure 2.  The size of Win was arbitrarily chosen to cover a 9 x 9 
spatial area, and the size of Wout was chosen to cover a 17 x 17 spatial area minus the concentric 
area of Win within Wout. Recall that both windows slide concentrically across the imagery.  

4.2.3 Background/Target Cube Structures (BT1, BT2, BT3, and BT4) 

Five different multivariate random variables were specified to represent targets, 
1, 2, 3, 4,T T T T and 5T ; their specifications are as follows: 
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where,  
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Targets were constructed to form sub-volumes of constant space size 9 x 9 x 5 using simulated 
realizations as specified in the third dimension. For simplicity, the correlations imbedded in Ξ  
were all equal to 1, and the variances were all equal to 100.  

Cube 1BT   was formed by simulating realizations of 1B  and imbedding (9 x 9) boxes of 
simulated realizations of 1, 2, 3, 4,T T T T  and 5T  as shown in figure 2.  For convenience, those 
boxes were labeled using the same denotations of target random variables.  In 1BT , the accuracy 
of targets’ spatial locations are unimportant, as long as they are significantly apart from each 
other (e.g., 35 pixels apart from their centroids, or greater.) 

Samples of cube 2BT  were formed by simulating realizations of 2B  and imbedding (9 x 9) boxes 
of target random sample realizations, as shown in figure 2.  The targets were spatially collocated 
sufficiently apart from each other and apart from any one of the transitions of background classes 
(e.g., greater than 18 pixels between target centroids and a transition).  For convenience, the 
same targets and their locations in 1BT  were used for 2BT , see figure 2. 

Samples of 3BT  cubes were formed by simulating realizations of 3B  and imbedding (9 x 9) 
boxes of simulated realizations of 2, 3,T T  and 4T , as shown in figure 2.  The motivation here 
was to measure performance of anomaly detectors on A challenging background configuration—
challenging with respect to class transitions and opportunities to have information from a single 
class compared to information from two or three classes, (see, for instance, window location l in 
figure 2 [ 3BT ]). Targets were spatially collocated significantly apart from each other and from 
class transitions (e.g., greater than 25 pixels apart between their centroids and background 
transitions, as shown in figure 2.) 

Samples of 4BT  cube were formed by simulating realizations of 3B  and adding (9 x 9) boxes of 
simulated realizations of 1, 2, 3, 4,T T T T and 5T , as shown in figure 3.  The motivation here was 
to increase the challenge by putting some targets in transitions of classes, where these targets 
would be compared to two background classes, and by putting some targets in locations where 
they would be compared to three background classes (see, for instance, window location a in 
figure 3 [ 4BT ]) and potential problem areas similar to window location b in figure 3 [ 4BT ]).  
These targets were collocated significantly apart from each other (i.e., greater than 35 pixels 
apart from their centroids), and for targets that were embedded in narrow background stripes, 
they were put perfectly to match the width of those stripes, (see figure 3). Recall that the spatial 
size of these targets matches the spatial size of Win.  There are some challenging areas in 4BT  
cubes, for instance, the window location b in figure 3 ( 4BT ) shows a case where inside window 
samples of a single class will be compared to outside window samples of 4 classes.   



 

 46  

Training Cube 3B          Ground Truth Mask         Testing Cube  4BT  

 
 

Figure 3. Training cube 3B , shown as the average of five planes, was also used to obtain cutoff thresholds for 
multiple simulated realizations of testing cube 4BT , also shown as the average of five planes.  This 
testing cube is considered in this simulation as the most challenging target-background configuration 
for existing anomaly detectors because some of background stripes’ sizes correspond to the size of the 
inside window, and additionally, as shown in the figure, there are horizontal background extensions 
(see positions c in 4BT ) of vertical sizes corresponding to inside window’s vertical size.  The ground 
truth mask is a binary image, where bright square rectangles representing values of 1 validate target 
locations. Similar truth masks are available for the other testing cubes shown in figure 2. Targets 
labeled differently (e.g., T1 versus T3) have different statistical characteristics.  

4.2.4 Type I and Type II Errors 

In order to estimate type I and type II errors, a 2 dimensional (2D) mask was required to verify 
the spatial location of targets in the simulated imagery.  These masks are binary (i.e., the 
locations of target pixels are 1 and locations of background pixels are 0); these masks are often 
referred to in the target community as ground truth.  Figure 3 shows the ground truth for 4BT .  
For this simulation, three ground truth masks were generated, one for 1BT  and 2BT , as they have 
the same target locations; a second one for 3BT ; and a third one for 4BT , which is shown in 
figure 3. 

Thus a detector tests a simulated cube producing a 2D output surface of real values.  A detector-
corresponding cutoff threshold, which is based on a specified type I error and which is relevant 
to the cube’s background excluding targets, is applied to that surface, such that, pixel values that 
are above the threshold and which fall within target regions, as validated through a 
corresponding ground truth mask, are considered a correct target detection; otherwise, they are 
considered a false detection.  These measures can be converted into type I and type II errors by 
estimating the probability of correct target detection, which is equivalent to 1 minus type II error, 
and by estimating the probability of false detections, which is equivalent to type I error. 

The type II error depends on the sample size, on the detector being used, and on the desired type 
I error.   The sample size depends on the window size used for sampling. Since the existing HS 
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anomaly detectors were designed to exploit certain multivariate characteristic of HS data, and the 
ones proposed in the report were designed to operate in an univariate feature domain, we felt that 
the fairest way to compare these different types of detectors was to test each detector using the 
same test procedure on the same simulated data, using the same window size, and the same 
desired type I error. 

The nonparametric HS anomaly detectors FLD, EST, and DPC use multivariate information 
from Wout and Win as input to yield a scalor response.  The parametric HS anomaly detectors RX 
uses multivariate information from Wout to estimate parameters of a Normal distribution, and test 
whether the average multivariate information from Win belong to that population, yielding a 
scalor response. The ANOVA anomaly detector uses as input the same transformed information 
that AsemiP, AFT, and AVT detectors do.  

4.2.5 Obtaining Cutoff Thresholds 

A single simulated realization of the three background configurations 1B , 2B , and 3B  were used 
to obtain cutoff thresholds based on the following set of chosen type I errors α :  

 
( )

( )
1 2 3 4

1 2 3 4

, , ,

    10 ,  10 ,  10 ,  10 .

α α α α α
− − − −

=

=
 (14) 

(For the purpose of anomaly detection, Type I errors that are higher than 10-1 have no practical 
value).  Using fixed sizes Wout and Win (i.e., Wout yielding n0 = 208 samples and Win yielding n1 = 
81 samples), the eight detectors were applied to these simulated realizations, using the data 
transformation, or no transformation, yielding 3 sets of cutoff thresholds per detector.  A 
corresponding set of thresholds then per detector was obtained for 1B , 2B , and 3B  based on the 
desired type I errors shown in (14).  For a given type I error, one would expect these thresholds 
to increase depending on the background cube reflecting the level of increasing background 
complexity among 1B , 2B , and 3B . For illustration, table 13 shows these sets corresponding to 
detectors RX (multivariate) and AsemiP (univariate). 

Table 13. Cutoff thresholds yielded by the multivariate RX anomaly detector using 57,121 
trial results per simulated background cube ( )h 1, ,3h =B .  

 

Type I Error   Background-Only Simulated Cubes 
α  1B  2B  3B  

10–1 2.73586756020100 17.14910687789102  30.75813296377958 
10–2 6.69480804231700 29.87601546556457 110.93641256094044 

10–3 10.81913096696389 34.61656634779293 164.77893286133680 
10–4 16.23242322101338 41.66426583843549 284.76027446709963 
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In reference to tables 13 and 14, it is worth mentioning that a detector that is less sensitive to 
these three background cubes would be more desired for the purpose of anomaly detection. This 
sensitivity can be noticed by observing the rate of increase among the cutoff thresholds for a 
given type I error among detectors.     

Table 14. Cutoff thresholds yielded by the univariate AsemiP anomaly 
detector using 57,121 trial results per simulated background cube 

( )h 1, ,3h =B . 

 

Type I Error   Background-Only Simulated Cubes 
α  1B  2B  3B  

10–1 0.10714023252450 4.04119537549038 5.41993634110348 
10–2 0.65071118087721 15.31063919196472 19.20618525917164 
10–3 1.66063008313870 15.97474497597062 43.95133931745743 
10–4 2.60835114791086 16.31042775997816 44.96548124318737 

 
Sets of thresholds per detector were used to estimate the type I and type II errors as described 
next.   

4.2.6 Estimating Type I and Type II Errors 

This subsection presents a computer programming implementation version for estimating type I 
and type II errors in the context of this simulation experiment.  

Type I errors were estimated for each detector using their corresponding sets of cutoff thresholds 
on their output surfaces after testing each detector on R simulated realizations of 

1 2 3, , ,BT BT BT and 4BT , such that, cutoff thresholds obtained using 1B  were only used to 
estimate type I errors on 1B ; cutoff thresholds obtained using 2B  were only used to estimate type 
I errors on 2BT ; and cutoff thresholds obtained using 3B  were only used to estimate type I errors 
on 3BT  and 4BT , as these latter target-background cubes shared the same background 
configuration of 3B . 

A generic null hypothesis 0H  can be stated for this simulation as follows:  At any given location 
in a simulated cube, samples observed in inW  belong to the same class of samples observed in 

outW .  This test will be repeated across the simulated cube generating an output surface for each 
detector, and the whole process repeated for M simulated cubes so that confidence intervals 
could be estimated for the types I and type II errors. 

The specific steps taken to obtain empirical results for the type I and type II errors are shown 
below for a test cube,  in this case 4BT , using a detector. 
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• Set sizes of the dual rectangular window described in this section to cover an area of 9 x 
9—the area of targets—for inW  and to cover an area of 17 x 17 minus the concentric area 
of inW  for outW . 

• Reduce the area of the corresponding ground truth mask (see figure 3)—this process is 
known as downsampling—from 256 x 256 to (256–17) x (256–17) to coincide with the 
detector’s output surface size. Denote downsampled mask as TRUTH. 

• For g  = 1 to R = 1500 (R, maximum number of repetitions) 

• Generate a simulated realization of 4BT , as described earlier 

• For i = 1 to 256  

• For j = 1 to 256 

• Using the dual rectangular window’s left-upper corner at (i,j), test the local 
region using the detector according to its input requirements 

• This process will generate an output surface OUTPUT 

• Intermediate Result: OUTPUT of size (256 – 17) x (256 – 17)  

• For t = 1 to 4 (the maximum number of cutoff thresholds per detector) 

• Let ( )1 4, ,ε ε ε=  be the detector’s cutoff thresholds corresponding to the 
desired type I errors shown in (4), where tε  corresponds to the desired type I 
error tα . Apply tε  to OUTPUT 

• Let ( ),v k w  represent the value of a pixel located at ( ),k w  in OUTPUT, Θ  

the set of target pixel locations in TRUTH, and cΘ  the mutually exclusive set 
representing background pixel locations in TRUTH; notice that the set of all 
pixel locations in TRUTH is cΘ Θ∪ , where ∪  is the union of sets. Denote 

cNΘ  the total number of locations in cΘ . 

• A type I error is committed when ( ), tv k w ε>  and ( ), ck w ∈Θ , where ∈  

denotes belongs to. Add all instances when the type I error was committed, 
denoting this sum faN .  

• Estimate type I error for trial g and for tα , denote this estimate 

 ( )ˆ
c

fag
t

N
N

α
Θ

=  (15) 
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• A type II error is committed when ( ), tv k w ε<  and ( ),k w ∈Θ .  Add all 

instances when the type II error was committed, such that, multiple instances 
of the same target will be counted only once to avoid redundancies.  (For 
instance, if among ten targets, one of them did not have at least a portion of its 
spatial area detected, the estimated type II error would be 1 divided by 10, or 
0.1; on the other hand, if a target yields a response resembling a relatively 
wide peak, this target would be counted as a single detection, as long as a 
portion of the peak’s footprint coincides with the target’s expected spatial 
location.  This procedure is widely practiced in the target community because 
targets often produce adjacent artifact responses owing to their presences in 
clutter backgrounds. Output surfaces will be shown later to clarify this point.) 

• Denote the sum of targets that committed type II errors as missN , and the total 
number of individual targets in TRUTH as totalN  (for 4BT , 10totalN = , see 
figure 3); notice that miss totalN N≤ , where ≤  is less or equal to 

• Estimate the power for trial g and for tα , denote it ( )ˆ g
tβ , which 

represents 1.0 minus the estimated type II error, or 

 ( )ˆ 1.0g miss
t

total

N
N

β = −  (16) 

• Intermediate Results for a single trial g:  
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 (17) 

• Intermediate Results for R = 1,500 trials: 
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• For t = 1 to 4 (total number of desired type I error values) 

• Estimate the means using results from 1,500 trials for the tth cutoff threshold: 
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• Estimate variances using results from 1,500 repetitions for the tth cutoff threshold: 
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• Estimate 95% confidence interval using results from the 1,500 trials for the tth 
cutoff threshold: 
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• Final Results: 95% confidence intervals for the power of the test, i.e., 

• Type I Error Confidence Intervals 
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1500 1500

                             

ˆ ˆ
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μ μ

⎛ ⎞
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⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟− +
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟− +
⎜ ⎟
⎝ ⎠

 (22) 

•  (1.0 – Type II Error) Confidence Intervals 
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1 1
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ˆ ˆ
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⎛ ⎞
⎜ ⎟− +
⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟− +
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟− +
⎜ ⎟
⎝ ⎠

 (23) 

The results shown in equations 22 and 23 were computed for each detector as it tested simulated 
data cubes. Their results are shown next.  

4.3 Simulation Results 

This subsection presents the 95% confidence intervals that were computed for each detector as 
they tested cubes 1BT , 2BT , 3BT , and 4BT .  The tables are organized such that the first column 
shows the detector’s name, followed by the desired type I error tα  ( )1, , 4t =  using (14), 

followed by the type I error’s 95% confidence intervals using equation 22, followed by the 
power’s 95% confidence intervals using (23)). This organization was applied to tables 15 
through 22.  Table 15 shows the simulation results of competing detectors testing 1,500 
simulated realizations of 1BT , targets on a easy background configuration.  The computation of 
individual power and type I error estimates used 57,121 trial results per repetition. 

From tables 15 and 16, it is quite evident that in many of these results the desired type I errors 

tα ( )4,,1=t  do not fall within their corresponding confidence intervals.  The reason is that 
since the cutoff thresholds were obtained from a background-only simulated cube (in this 
case 1B ), it produced lower threshold values compared to detectors’ artifact responses that can be 
relatively high owing to the presence of targets in a test cube (in this case 1BT ).  These artifacts 
occur when homogenous samples in the inside window are compared to a mixture of target-
background samples in the outside window—see, for instance, window location i in figure 2 
( 1BT ), and examples of 3D surfaces in figure 4. 

Table 16 shows the simulation results of our detectors testing 1,500 simulated realizations of 
1BT , where estimations of power and type I error per simulation repetition used 57,121 trial 

results. 
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Table 15. Multivariate detectors’ type I error and power performances using 
57,121 trial results per simulated background cube ( )

1
gB , where g indexes 

repetitions ( ) 1500
11{ }g

gB = , and 57,121 trial results per target-background cube 
( )

1
gBT , ( ) 1500

11{ }g
gB = . 

 

Single Homogeneous Background Region Plus 8 Targets  
Easy background configuration, targets in homogeneous areas 

Type I Error 
95% Confidence Interval 

(1.0 – Type II Error) 
95% Confidence Interval 

 
Detectors 

 
tα  

Lower Bound   Upper Bound Lower Bound   Upper Bound 
 
 
RX1,2 

10–1 

10–2 

10–3 

10–4 

   0.155322 
   0.038951 
   0.012227 
   0.002292 

   0.158816 
   0.039978 
   0.012741 
   0.002528 

   1.000000 
   1.000000 
   1.000000 
   1.000000 

   1.000000 
   1.000000 
   1.000000 
   1.000000 

 
 
FLD2 

10–1 

10–2 

10–3 

10–4 

   0.170777 
   0.087272 
   0.078813 
   0.077659 

   0.173506 
   0.087644 
   0.078926 
   0.077706 

   1.000000 
   1.000000 
   1.000000 
   1.000000 

   1.000000 
   1.000000 
   1.000000 
   1.000000 

 
 
EST2 

10–1 

10–2 

10–3 

10–4 

   0.170015 
   0.077576 
   0.069210 
   0.067697 

   0.172612 
   0.078367 
   0.069504 
   0.067767 

   1.000000 
   1.000000 
   1.000000 
   1.000000 

   1.000000 
   1.000000 
   1.000000 
   1.000000 

 
 
DPC2 

10–1 

10–2 

10–3 

10–4 

   0.171855 
   0.087120 
   0.078594 
   0.077440 

   0.175635 
   0.088003 
   0.078854 
   0.077517 

   1.000000 
   1.000000 
   1.000000 
   1.000000 

   1.000000 
   1.000000 
   1.000000 
   1.000000 
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Table 16.  Univariate detectors’ type I error and power performances using 
57,121 trial results per simulated background cube ( )

1
gB , where g indexes repetitions 

{ }1500( )
1 1

g
g

B
=

 , and 57,121 trial results per target-background cube ( )
1

gBT , { }1500( )
1 1

g
g

BT
=

.  

Single Homogeneous Background Region Plus 8 Targets 
Easy background configuration, targets in homogeneous areas 

Type I Error 
95% Confidence Interval 

(1.0 – Type II Error) 
95% Confidence Interval 

 
Detectors 

 
tα  

Lower Bound Upper Bound Lower Bound Upper Bound 
 
 

AsemiP 

 
10–1 

10–2 

10–3 

10–4 

 
0.171441 
0.072887 
0.048219 
0.037595 

 
0.174740 
0.073796 
0.048483 
0.037807 

 
1.000000 
1.000000 
1.000000 
1.000000 

 
1.000000 
1.000000 
1.000000 
1.000000 

 
 

AFT 

 
10–1 

10–2 

10–3 

10–4 

 
0.022617 
0.001783 
0.000579 
0.000579 

 
0.022708 
0.001813 
0.000589 
0.000589 

 
1.000000 
1.000000 
1.000000 
1.000000 

 
1.000000 
1.000000 
1.000000 
1.000000 

 
 

AVT 

 
10– 

10–2 

10–3 

10–4 

 
0.156213 
0.055914 
0.039220 
0.039220 

 
0.159702 
0.056730 
0.039370 
0.039370 

 
1.000000 
1.000000 
1.000000 
1.000000 

 
1.000000 
1.000000 
1.000000 
1.000000 

 
 
ANOVA 

 
10–1 

10–2 

10–3 

10–4 

 
   0.121679 
   0.010971 
   0.001161 
   0.000086 

    
   0.125269 
   0.011928 
   0.001412 
   0.000147 

    
   1.000000 
   1.000000 
   1.000000 
   1.000000 

    
   1.000000 
   1.000000 
   1.000000 
   1.000000 

 

Relatively high artifact responses can be observed in figure 4, where 3D views of some of the 
detectors’ output surfaces are exhibited.  (Those sample surfaces are examples of the 
intermediate result denoted as OUTPUT in the steps discussed earlier for estimating type I and 
type II errors.) 

A final observation from results shown in table 16 is the repetition of lower and upper bounds for 
some of the detectors’ confidence intervals at different tα .  This repetition happens because of 
the resolution’s discrete nature in histogram generation.  Our detectors often produce discretely 
isolated relatively high responses, which sometimes cannot be resolved for relatively lower type 
I errors (e.g., 310tα

−= ).  So, when this resolution limitation occurs at some type I error, lower 
type I errors will produce the same confidence interval estimate.  
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Figure 4. Examples of intermediate result OUTPUT, as described in text. The peaks are responses from the eight 
targets as seen by the different detectors testing a single simulated realization of BT1.  Notice the 
artifact responses in the vicinity of these peaks.  Those artifacts contribute to the type I error, thus, 
increasing its estimate in respect to the desired type I error. 
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Now that we have calibrated detectors’ performances in a benign target-background 
configuration, let us take a look at their performances in a more challenging background 
configuration—a moderate target-background configuration.  Table 17 shows the simulation 
results using existing detectors to test 1,500 simulated realizations of 2BT —a moderate target-
background configuration. 

Results in table 17 already show some signs of performance losses (higher type II error) for three 
of the algorithms, they are: EST, DPC, and FLD.  The fundamental cause for these losses is the 
detectors’ inability to handle transitions of regions.  Recall that the cutoff thresholds used to test 

2BT   were obtained using a moderate background configuration 2B , which is a six-class 
background-only cube.  As seen in figure 5, the transitions among these regions yield relatively 
high responses using these detectors, which in turn yield relatively high cutoff thresholds to 
approximate the type I error requested.  Figure 5 depicts, for instance, target examples that can 
respond comfortably above some of these detectors’ responses on transitions of background 
regions, and it also shows target examples that cannot respond as high.  The EST detector 
suffered the worst performance loss testing 2BT .  Figure 6 shows two 3D views of the same 
output surface produced by the EST detector testing a single simulated realization of 2BT .  
Notice that the same eight targets that could be detected in 1BT  (see figure 3, figure 4 and table 
15), responded below the five cutoff thresholds corresponding to the desired type I errors in (14) 
for this detector on 2BT , producing zero target detection—or equivalently a type II error of 
unity, as shown in table 17.  The FLD and DPC detectors missed 1 out of 8 targets.  Although the 
detectors FLD, EST, and DPC already show signs of performance losses (higher type II errors) 
in table 17—in contrast to their performances in table 15, the industry standard RX detector, as 
well as the ANOVA detector, handled well this moderately challenging target-background 
configuration.  
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Table 17. Multivariate detectors’ type I error and power performances using 57,121 
trial results per simulated background cube ( )

2
gB , where g indexes repetitions 

{ }1500( )
2 1

g
g

B
=

 , and 57,121 trial results per target-background cube ( )
2

gBT , 

{ }1500( )
2 1

g
g

BT
=

.   

Six Homogeneous Background Regions Plus 8 Targets 
Moderate background configuration, targets in homogeneous areas 

Type I Error 
95% Confidence Interval 

(1.0 – Type II Error) 
95% Confidence Interval 

 
Detectors 

 
tα  

Lower Bound Upper Bound Lower Bound Upper Bound 
 
 

RX 

10–1 

10–2 

10–3 

10–4 

0.105908 
0.011534 
0.001980 
0.000258 

0.106425 
0.011852 
0.002107 
0.000346 

1.000000 
1.000000 
1.000000 
1.000000 

1.000000 
1.000000 
1.000000 
1.000000 

 
 

FLD 

10–1 

10–2 

10–3 

10–4 

0.107706 
0.005343 
0.001772 
0.001767 

0.107727 
0.005670 
0.001783 
0.001768 

0.875000 
0.875000 
0.875000 
0.875000 

0.875000 
0.875000 
0.875000 
0.875000 

 
 

EST 

10–1 

10–2 

10–3 

10–4 

0.106490 
0.005344 
0.001772 
0.001768 

0.106511 
0.005670 
0.001783 
0.001768 

0.000000 
0.000000 
0.000000 
0.000000 

0.000000 
0.000000 
0.000000 
0.000000 

 
 

DPC 

10–1 

10–2 

10–3 

10–4 

0.107706 
0.005344 
0.001772 
0.001768 

0.107727 
0.005670 
0.001783 
0.001768 

0.875000 
0.875000 
0.875000 
0.875000 

0.875000 
0.875000 
0.875000 
0.875000 
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Figure 5. Examples of intermediate result OUTPUT, as described in text.  The peaks are responses from the 
eight targets as seen by the different detectors testing a single simulated realization of 2BT .  Notice, in 
some of these surfaces, M shaped row responses owing to transitions of different background classes—
see, for instance, window locations a, b, and c in figure 2 ( 2B ).  Location a yields a local peak to the 
left of b, b yields a local valley, and c yields a local peak to the right of b.  
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Figure 6. An intermediate result OUTPUT, EST detector testing 2BT .  Both surfaces are the same, but shown at 
different viewing perspectives.  Some of the artifacts shown for the view at the right hand side were 
due to the presence of targets T2 and T3 in the outside window Wout —these two targets are shown 
immediately to the right of these artifacts.  A similar case is shown for window location j in figure 2 
( 2BT ).  The responses of all 8 targets using the EST detector were below the cutoff thresholds 
corresponding to this detector for this background configuration. 

Table 18 shows the simulation results using the univariate detectors to test 1,500 simulated 
realizations of 2BT . 
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Table 18. Univariate detectors’ type I error and power performances using 57,121 trial 

results per simulated background cube ( )
2

gB , where g indexes repetitions { }1500( )
2 1

g
g

B
=

, 

and 57,121 trial results per target-background cube ( )
2

gBT ,{ }1500( )
2 1

g
g

BT
=

.    

Six Homogeneous Background Regions Plus 8 Targets 
Moderate background configuration, targets in homogeneous areas 

Type I Error 
95% Confidence Interval 

(1.0 – Type II Error) 
95% Confidence Interval 

 
Detectors 

 
tα  

Lower Bound Upper Bound Lower Bound Upper Bound 
 
 

AsemiP 

10–1 

10–2 

10–3 

10–4 

0.010186 
0.002429 
0.002429 
0.002429 

0.010240 
0.002429 
0.002429 
0.002429 

1.000000 
1.000000 
1.000000 
1.000000 

1.000000 
1.000000 
1.000000 
1.000000 

 
 

AFT 

10–1 

10–2 

10–3 

10–4 

0.010248 
0.002450 
0.002450 
0.002449 

0.010305 
0.002473 
0.002473 
0.002470 

1.000000 
1.000000 
1.000000 
1.000000 

1.000000 
1.000000 
1.000000 
1.000000 

 
 

AVT 

10–1 

10–2 

10–3 

10–4 

0.135670 
0.008885 
0.001067 
0.000236 

0.198334 
0.016029 
0.001435 
0.000259 

1.000000 
1.000000 
1.000000 
1.000000 

1.000000 
1.000000 
1.000000 
1.000000 

 
 

ANOVA 

10–1 

10–2 

10–3 

10–4 

0.117101 
0.011954 
0.001187 
0.000154 

0.119892 
0.012952 
0.001442 
0.000230 

1.000000 
1.000000 
1.000000 
1.000000 

1.000000 
1.000000 
1.000000 
1.000000 

 

Some of the confidence intervals shown in tables 17 and 18 do not include the values of tα , the 
reason for these apparent discrepancies were explained in the text discussion for tables 15 and 
16.  

Detectors AsemiP, AFT, and AVT handled well this moderately challenging target-background 
configuration, see table 18 and examples of output surfaces in figure 5.  The output surfaces 
corresponding to AsemiP and ANOVA detectors in figure 5 depict how insensitive these 
detectors are to transitions of regions.  The same holds true for detectors AFT and AVT, 
although their surfaces are not shown in figure 5. 

Table 19 shows the simulation results of competing detectors testing 1,500 simulated realizations 
of 3BT , a difficult background configuration having targets in homogenous areas, see figure 2 
( 3BT ). 
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Table 19. Multivariate detectors’ type I error and power performances using 
57,121 trial results per simulated background cube ( )

3
gB , where g indexes 

repetitions { }1500( )
3 1

g
g

B
=

 , and 57,121 trial results per target-background cube 

( )
3

gBT , { }1500( )
3 1

g
g

BT
=

.    

Nine Homogeneous Background Regions Plus 3 Targets 
Difficult background configuration, targets in homogeneous areas 

Type I Error 
95% Confidence Interval 

(1.0 – Type II Error) 
95% Confidence Interval 

 
Detectors 

 
tα  

Lower Bound Upper Bound Lower Bound Upper Bound 
 
 

RX 

10–1 

10–2 

10–3 

10–4 

0.099516 
0.010100 
0.001470 
0.000009 

0.099962 
0.010353 
0.001488 
0.000032 

1.000000 
1.000000 
1.000000 
1.000000 

1.000000 
1.000000 
1.000000 
1.000000 

 
 

FLD 

10–1 

10–2 

10–3 

10–4 

0.098667 
0.010641 
0.001663 
0.000918 

0.098757 
0.010773 
0.001768 
0.000954 

0.666667 
0.666667 
0.666667 
0.666667 

0.666667 
0.666667 
0.666667 
0.666667 

 
 

EST 

10–1 

10–2 

10–3 

10–- 

0.095054 
0.010278 
0.001663 
0.000918 

0.095144 
0.010411 
0.001767 
0.000954 

0.000000 
0.000000 
0.000000 
0.000000 

0.000000 
0.000000 
0.000000 
0.000000 

 
 

DPC 

10–1 

10–2 

10–3 

10–4 

0.098667 
0.010641 
0.001663 
0.000918 

0.098757 
0.010773 
0.001767 
0.000954 

0.666667 
0.666667 
0.666667 
0.666667 

0.666667 
0.666667 
0.666667 
0.666667 

 
As mentioned immediately after table 17, for a different set of targets and background 
configuration, table 19 shows that the EST detector using its corresponding cutoff thresholds 
missed all 3 targets in this difficult background configuration.  Similarly, using their 
corresponding cutoff thresholds for this difficult background configuration, table 19 shows that 
detectors FLD and DPC missed 1 out of 3 targets.  On the other hand, detectors RX and ANOVA 
handled well this relatively difficult target-background configuration.  

Table 20 shows the simulation results of our detectors testing 1,500 simulated realizations of 
3BT . 
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Table 20. Univariate detectors’ type I error and power performances using 57,121 
trial results per simulated background cube ( )

3
gB , where g indexes repetitions 

{ }1500( )
3 1

g
g

B
=

 , and 57,121 trial results per target-background cube ( )
3

gBT , 

{ }1500( )
3 1

g
g

BT
=

.    

Nine Homogeneous Background Regions Plus 3 Targets 
Difficult background configuration, targets in homogeneous areas 

Type I Error 
95% Confidence Interval 

(1.0 – Type II Error) 
95% Confidence Interval 

 
Detectors 

 
tα  

Lower Bound   Upper Bound Lower Bound   Upper Bound 
 
 
AsemiP 

10–1 

10–2 

10–3 

10–4 

   0.107317 
   0.010891 
   0.001047 
   0.000214 

   0.107851 
   0.011159 
   0.001141 
   0.000230 

   1.000000 
   1.000000 
   1.000000 
   1.000000 

   1.000000 
   1.000000 
   1.000000 
   1.000000 

 
 
AFT 

10–1 

10–2 

10–3 

10–4 

   0.107367 
   0.010893 
   0.001047 
   0.000216 

   0.107903 
   0.011158 
   0.001142 
   0.000234 

   1.000000 
   1.000000 
   1.000000 
   1.000000 

   1.000000 
   1.000000 
   1.000000 
   1.000000 

 
 
AVT 

10–1 

10–2 

10–3 

10–4 

   0.100379 
   0.009416 
   0.001003 
   0.000235 

   0.101131 
   0.010360 
   0.001247 
   0.000282 

   1.000000 
   1.000000 
   1.000000 
   1.000000 

   1.000000 
   1.000000 
   1.000000 
   1.000000 

 
 

ANOVA 

10–1 

10–2 

10–3 

10–4 

0.098873 
0.008414 
0.000853 
0.000069 

0.102113 
0.009312 
0.001049 
0.000105 

1.000000 
1.000000 
1.000000 
1.000000 

1.000000 
1.000000 
1.000000 
1.000000 

 
Table 20 shows that univariate detectors can also maintain a relatively low type I error and detect 
all 3 targets.  As explained earlier, adjacent locations to targets often yield high responses, which 
will contribute to the type I error.  These contributions explain the reason why some values of 

tα  do not fall within estimated confidence intervals—see, for instance, estimated confidence 

intervals for 5
5 10α −=  in table 20.   

The gradual increase of target-background configuration difficulty from 1BT  to 3BT  has shown 
some performance losses and some performance comparability between multivariate and 
univariate detectors (e.g., detectors RX and ANOVA have performed comparably with detectors 
AsemiP, AFT, and AVT.)  We present next the detectors’ performances on cubes representing 
the most difficult target-background configuration in this simulation— 4BT .  

Table 21 shows the simulation results of competing detectors testing 1,500 simulated realizations 
of 4BT . 
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Table 21. Multivariate detectors’ type I error and power performances using 57,121 
trial results per simulated background cube ( )

3
gB , where g indexes repetitions 

{ }1500( )
3 1

g
g

B
=

 , and 57,121 trial results per target-background cube ( )
4

gBT , 

{ }1500( )
4 1

g
g

BT
=

. 

Nine Homogeneous Background Regions Plus 10 Targets 
Difficult background configuration, 7 targets in transition areas 

Type I Error 
95% Confidence Interval 

(1.0 – Type II Error) 
95% Confidence Interval 

 
Detectors 

 
tα  

Lower Bound Upper Bound Lower Bound Upper Bound 
 
 

RX 

10–1 

10–2 

10–3 

10–4 

0.101381 
0.009608 
0.000851 
0.000921 

0.101805 
0.009831 
0.000861 
0.000923 

1.000000 
1.000000 
0.700000 
0.500000 

1.000000 
1.000000 
0.700000 
0.500000 

 
 

FLD 

10–1 

10–2 

10–3 

10–4 

0.101444 
0.010374 
0.001120 
0.000072 

0.101535 
0.010522 
0.001279 
0.000112 

0.666667 
0.500000 
0.500000 
0.500000 

0.666667 
0.500000 
0.500000 
0.500000 

 
 

EST 

10–1 

10–2 

10–3 

10–4 

0.101303 
0.010374 
0.001120 
0.000072 

0.101394 
0.010522 
0.001279 
0.000112 

0.700000 
0.300000 
0.300000 
0.300000 

0.700000 
0.300000 
0.300000 
0.300000 

 
 

DPC 

10–1 

10–2 

10–3 

10–4 

0.101444 
0.010374 
0.001120 
0.000072 

0.101535 
0.010522 
0.001279 
0.000112 

0.666667 
0.500000 
0.500000 
0.500000 

0.666667 
0.500000 
0.500000 
0.500000 

 
The results shown in table 21 for 10 targets included the same 3 targets used to obtain results 
shown in table 19.  Table 21 shows noticeable target detection degradations compared to 
previous tables, with an apparent exception—the EST detector’s performance between table 19 
and table 21.  The 3 targets that were undetected by the EST detector as shown in table 19 were 
again missed by this detector as shown in table 21 (see row for EST, 1

1 10α −= ).  The EST 
detector missed those 3 out of 10 targets using its correspondent cutoff threshold for 1α , but—
ironically—it could detect other targets found in more difficult locations, see locations 
characterized by transitions of regions in figure 3 (window locations a and b in 4BT ).  This irony 
is what motivates some users to use the EST detector in real HS data. 

As mentioned earlier, anomaly detectors are known for producing relatively high responses 
adjacent to target locations because, at those adjacent locations, samples of homogeneous 
backgrounds in the inside window inW  are compared to a mixture of samples in the outside 
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window outW —this mixture may consist of samples of targets, samples of the same background 
in inW  and from other backgrounds (see, for instance, window position b in figure 3 [ 4BT ].) 

Table 22 shows the simulation results using proposed detectors to test 1,500 simulated 
realizations of 4BT . 

Table 22. Univariate detectors’ type I error and power performances using 57,121 
trial results per simulated background cube ( )

3
gB , where g indexes repetitions 

{ }1500( )
3 1

g
g

B
=

 , and 57,121 trial results per target-background cube ( )
4

gBT , 

{ }1500( )
4 1

g
g

BT
=

.    

Nine Homogeneous Background Regions Plus 10 Targets 
Difficult background configuration, 7 targets in transition areas 

Type I Error 
95% Confidence Interval 

(1.0 – Type II Error) 
95% Confidence Interval 

 
Detectors 

 
tα  

Lower Bound Upper Bound Lower Bound Upper Bound 
 
 

AsemiP 

10–1 

10–2 

10–3 

10–4 

0.111715 
0.011173 
0.001400 
0.000802 

0.112103 
0.011399 
0.001496 
0.000817 

1.000000 
1.000000 
1.000000 
1.000000 

1.000000 
1.000000 
1.000000 
1.000000 

 
 

AFT 

10–1 

10–2 

10–3 

10–4 

0.111758 
0.011171 
0.001402 
0.000805 

0.112148 
0.011395 
0.001499 
0.000823 

1.000000 
1.000000 
1.000000 
1.000000 

1.000000 
1.000000 
1.000000 
1.000000 

 
 

AVT 

10–1 

10–2 

10–3 

10–4 

0.103537 
0.026165 
0.019580 
0.018893 

0.104030 
0.026788 
0.019728 
0.018938 

1.000000 
1.000000 
1.000000 
1.000000 

1.000000 
1.000000 
1.000000 
1.000000 

 
 

ANOVA 

10–1 

10–2 

10–3 

10–4 

0.100254 
0.009011 
0.000978 
0.000077 

0.103467 
0.009827 
0.001151 
0.000107 

1.000000 
0.500000 
0.500000 
0.500000 

1.000000 
0.500000 
0.500000 
0.500000 

 

Despite the difficult target-background configuration in 4BT , table 22 shows that the univariate 
detectors can maintain a relatively low type I error while detecting all 10 targets in this 
simulation.  To better appreciate the difference in performance among different detectors, see 
examples output surfaces shown in figure 7. 
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Figure 7. Examples of intermediate result OUTPUT, as described in text.  The peaks are responses from the 10 
targets as seen by the different detectors testing a single simulated realization of 4BT .  Notice the 
artifact responses in the vicinity of some of these peaks.  Some times these artifact responses are more 
accentuated then targets’ responses—see, for instance, the responses of targets T1, T4, T5, T2, and T3 
(embedded in narrow background stripes) in the RX output surface.  Those artifacts also contribute to 
the type I error, thus, increasing its estimate in respect to the desired type I error.  

Figure 7 shows that the ANOVA detector can suppress very well the challenges presented by the 
difficult background configuration in 4BT , but unfortunately it also suppresses the most 
challenging positions where targets are located.  All the five targets that were located in narrow 
background stripes were undetected by the ANOVA detector (see targets T1, T4, T5, T2, and T3 
in figure 7 [ 4BT ] and relate where in the ANOVA output surface their responses would be 
positioned).  

Similar trend can be observed for the industry standard RX detector’s performance, see table 21 
and figure 7. As the desired type I error for the RX detector decreases, its estimated type II error 
increases.  For instance, the responses of targets T1, T4, and T5 in one of the narrow background 
stripes were undetected at the cutoff threshold corresponding to the desired type I error 

3
3 10α −=  and lower, and the responses of targets T2 and T3 in another narrow background 
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stripe were also undetected at the cutoff threshold corresponding to the desired type I error 
4

4 10α −=  and lower.  Thus, at 4
4 10α −= 4

4 10−=α , the RX detector missed 5 out of 10 targets.  

Similar performance loss trends were already observed for the other multivariate detectors, as 
shown in tables 17, 19, and 21.  (Incidentally, the outputs surfaces shown for AsemiP and RX in 
figure 7 were clipped at 400 for displaying purposes only, some of those peaks continue to much 
higher values, as we will see shortly.)   

Table 22 shows that the proposed detectors handled well the most difficult target-background 
configuration in this simulation.  The AsemiP output surface shown in figure 7 illustrates in a 
genetic form the reason why the proposed detectors did not decrease their performance levels 
testing simulated realizations of 4BT .  In other words, with respect to the ten target responses, 
these detectors could (i) suppress window-size-related background region extensions from a 
major background class, (ii) suppress challenging narrow background regions (see, for instance, 
window location b in figure 3), and (iii) suppress—relatively speaking—the local transitions of 
distinct background regions.  

It is worth mentioning from results in figure 7 that the AsemiP detector’s signal to noise ratios 
between target responses (signal) and background responses (noise) are not necessarily the same 
for all targets, or for that matter for the same target type located in different local background 
configurations (see, for instance, target responses of T1, T2, and T4 in figure 7, as they are 
spatially located in two different local areas, inside a narrow background stripe and outside this 
stripe).  The same observation can be made for the other detectors’ performances as well.  This 
issue is related to signal to noise ratio, which will be addressed later.  Our detectors are not 
completely insensitive to the local background configuration and dual window size, but they 
demonstrate a significant amount of insensitivity testing difficult background scenarios, which is 
in contrast to the performances of alternative techniques.  More importantly, this contrast in 
performances has been consistent using these detectors on real hyperspectral imagery, see, for 
instance, (13).  

4.4 Concluding Remarks 

The simulation experiment results presented in section 4 were intended only as an illustration of 
what types of backgrounds univariate detectors perform better than multivariate detectors.  In 
this illustration, the background complexity gradually increased from a relatively simple 
homogeneous class configuration, to a moderately difficult five region class configuration, to a 
difficult nine region class configuration having some of the local transitions of regions 
corresponding to the dual window size.  Targets then were strategically introduced into multiple 
realizations of these background cubes and tested so that we could measure the effects of these 
changes on different anomaly detection techniques using their corresponding set of calibrated 
cutoff thresholds. 
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Results presented in subsection 4.3 demonstrated that the univariate anomaly detectors’ 
performances are significantly less dependent on the background configuration than the 
performances of the multivariate detectors discussed in this report.  These univariate detectors 
also work well accentuating the presence of targets in difficult background configurations (see 
figure 7 and table 22).  This kind of robustness is highly desired in the target community, since 
real life scenarios present all kinds of background configurations.  

The univariate anomaly detectors’ effectiveness is less sensitive to difficult target-background 
configurations because they are designed to perform an indirect comparison between samples 
that are observed, in this particular case, via the inside window and samples viewed from the 
outside window, with both windows centered at the same spatial location in the imagery, (see 
(13) for details on the indirect comparison approach).  

In doing so, these univariate detectors are better equipped to handle mixtures of classes that may 
be observed through the outside window, since they compare estimated means and/or variances 
of outside samples to corresponding estimates using the union of the outside and inside samples. 

However, the univariate anomaly detectors are not completely insensitive to the local 
background configuration and window sizes, but they appear to be significantly less sensitive 
while testing difficult background scenarios, which is in contrast to the performances of the 
multivariate detectors.  

We argued in section 1 that the deficiencies built into multivariate anomaly detectors, i.e., 
inability to properly handle transitions of regions, which increases the false alarm rate, is the 
main drive for their lack of robustness.  Alternative techniques that were not investigated in this 
report were not proposed to outperform the industry standard RX anomaly detector in terms of 
yielding a higher PD and a lower false alarm rate, but to outperform the RX detector’s 
computational time.  

Since the results presented in section 4 were obtained from conducting controlled simulations, 
estimated PD differences for these detectors could also be controlled by designed.  For instance, 
if we increased the number of targets in local areas characterized by a benign background 
configuration, the PD of the multivariate detectors—especially the RX detector—could be made 
to correspond to PD results yielded by our detectors.  Conversely, if we increased the number of 
targets in difficult local background configurations, the RX detector and the other multivariate 
techniques would have produced significantly lower PD results.  
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5. Summarized Conclusions  

The statistical methods and data specifications discussed in this report are intended to serve as a 
guide for analyzing more rigorously the strengths and weaknesses of HS anomaly detectors.  
Summarized conclusions on the simulation experiments discussed in sections 2, 3, and 4 are 
found below in subsections 5.1, 5.2, and 5.3, respectively.  Additional and more detailed 
concluding remarks on these simulation experiments are found in subsections 2.5, 3.4, and 4.4.   

5.1 Simulation Tests Using Idealized Homogeneous Samples 

The simulation experiments (Experiment 1 and Experiment 2) presented in section 2 focused on 
showing relative strengths and weaknesses of two competing anomaly detection techniques, an 
univariate based anomaly detector (AsemiP) and the multivariate based industry standard (RX).  
Tailored hypothesis tests were devised using idealized homogeneous samples, such that, both 
detectors shared the same input samples.  

Experiment 1 addressed a more generalized concern, i.e., the sensitivity of these detectors as a 
function of decreasing noise under an alternative hypothesis H1, given that—by design—H1 
(with zero noise) was a hard alternative to be detected because it consisted of randomly 
generated idealized samples representing two similar homogeneous classes.  (Decreasing noise in 
this context made these classes less separable.)  The AsemiP detector showed relative strength 
over the RX detector in Experiment 1, see table 1.  As discussed in detail in subsection 2.3, the 
AsemiP’s favorable performance shown in table 1 is attributed to this detector’s data 
preprocessing step, which is an integral part of this anomaly detection approach. 

Experiment 2 addressed a more specialized concern, i.e., the sensitivity of these detectors as a 
function of increasing noise under H0, given that—by design—H1 (with zero noise under H0) 
was an easy alternative to be detected because it consisted of randomly generated idealized 
samples representing two distinct homogeneous classes.  The RX detector showed relative 
strength over the AsemiP detector in Experiment 2, as shown in table 2.  The specialized concern 
addressed in this experiment could happen in the target application, as a special case, when 
samples of the same homogeneous class are collected under distinct atmospheric conditions and 
these sample sets are then used later on to represent the null hypothesis, as explained in more 
detail in subsection 2.3. 

5.2 Simulation Tests Using Heterogeneous Samples 

The simulation experiments presented in section 3 measured the sensitivity of two anomaly 
detectors (AsemiP and RX) to idealized sample mixtures under both null and alternative 
hypothesis tests, H0 and H1, respectively.  These simulation experiments first emphasized testing 
the sensitivity of both detectors as a function of varying spectral magnitude in a specified data 
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model, and independently testing the sensitivity of both detectors as a function of varying 
spectral shape in the specified data model.  These simulation experiments then focused on testing 
these detectors’ abilities to suppress transitions of different regions in the imagery relative to 
genuine anomalies in the same experiment—this is a well known but often ignored problem in 
the HS image processing community.  Data models consisting of free parameters were 
introduced to specify mixtures of difference object classes, and a set of tailored null and 
alternative hypotheses were introduced to mimic testing these detectors over spatial transitions of 
regions.  

The RX technique showed high sensitivity to transitions of different regions, which can be 
modeled as the comparison between samples of a mixture and samples of a class belonging to 
that mixture.  The RX technique showed also high sensitivity to magnitude (bias) differences 
among idealized multivariate samples.  Both behaviors are highly undesirable for anomaly 
detection applications because this detector’s PD does depend on the detector’s ability to keep 
relatively low null-hypothesis based cutoff thresholds (transitions of regions under the null 
hypothesis) and on the illumination (which influences spectral magnitude) on objects in the 
scene.  

The AsemiP technique, on the other hand, showed significantly less sensitivity to sample 
mixtures in the null hypothesis (owing to its sample-combining test statistic), and insensitivity to 
magnitude differences among input samples (owing to its data preprocessing step, which by 
design removes sample bias).  

5.3 Simulation Tests Using Idealized Cubes 

The simulation experiments presented in section 4 showed results from testing idealized imagery 
(cubes) with multiple univariate-based and multivariate-based anomaly detectors.  This 
simulation experiment used exactly the same testing mechanism that these detectors would have 
used to test real nadir looking HS data in the target application.  The emphasis of this simulation 
experiment was on evaluating these detectors as a function of increasing complexity level on the 
local configuration of clutter background.  These simulation experiments used 1,500 randomly 
generated cubes. 

Target locations in the test cubes were selected to challenge these anomaly detectors with respect 
to a complex interaction among the local background configuration, target spatial area, and local 
sampling window, which is known for affecting detectors’ PD performances on real HS data.  
The target and window sizes (inside and outsize) were kept constant, but the local background 
configurations varied from easy, moderate, to difficult.    

Results from these simulation experiments demonstrated that the performances of sample-
combining univariate based anomaly detectors are significantly less dependent on the local 
background configuration than the performances of multivariate detectors that are discussed in 
appendix.  This insensitivity to local background configuration augments the practical value of 
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anomaly detection in real operational scenarios, since real life scenarios present all kinds of 
background configurations, and different target sizes.  We argued in section 1 and throughout 
this report that this inherent deficiency of most multivariate anomaly detectors found in the 
literature, i.e., inability to properly handle transitions of regions, is a main cause for producing a 
high false alarm rate. 
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Appendix 

In this appendix, details are discussed on miscellaneous results that are mentioned throughout the 
report, e.g., the data transformation as the first step prior to the application of univariate anomaly 
detectors, the mathematical representation of all of the detectors used for this report (see also 
(13) for additional details), full table of parameter estimations used for one of the data models.  

Data Preprocessing (Feature Space) 

Figure A-1 depicts the dual rectangular window that was used to sample local information from 
the simulated data discussed in this document. 

 

Figure A-1.  Dual rectangular window.  

 
In the literature (see references in the report), one would be hard pressed to find hyperspectral (or 
multispectral) anomaly detectors that are based on univariate methods—an unnatural choice 
given that such a data type is in fact multivariate.  We proposed, for reasons discussed in the 
report, to transform or to preprocess the data into a univariate space and to apply our detectors in 
that space. Details follow. 

From the inside and outside samples shown in figure 1, apply a first order differentiation—an 
approximation—and compute their averages after differentiating, i.e., 
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and  
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 (A-2) 

where [ ]t⋅  denotes the vector transpose operator. 

Compute the averages of resulting vectors in equation A-1 and A-2, or 
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Compute features as  
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where the operator x  denotes the squared root of tx x , and 01, ,i n= .  

From equation A-4, the outside (reference) feature sequence is 

 ( )
00 01 02 0,   ,     ,   ny y y y=  (A-5) 

and the inside (test) feature sequence is 

 ( )
01 11 12 1,   ,     ,   ny y y y= . (A-6) 

Notice that both the reference and test feature sequences have size 0n . 

Detectors AsemiP, AFT, AVT, and ANOVA use (5A) and (6A) as input data. 

Using the denotations shown in figure 1, detectors RX, FLD, EST, and DPC use matrices Xin 
(test) and Xout (reference) shown below to extract input data, 
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and 

 

1

1

1

011 021 0 1

012 022 0 2

01 02 0

,   ,  ,  

,   , ,  

           
,   , ,  

n

n

b b n b

x x x

x x x

x x x

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

outX . (A-8) 

The detectors used in this simulation are discussed next. 

Approximation to Semiparametric (AsemiP) Anomaly Detector 

Our interest to pursue a principle of indirect comparison led us to the semiparametric test 
statistic—discussed in the report, which in turn motivated us to propose a significantly simpler 
and computationally faster detector, the AsemiP anomaly detector.  We showed in the report that 
the AsemiP detector can approximately yield the performance level achieved by the 
semiparametric detector testing real HS data. 

The AsemiP anomaly detector is defined as 
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where from (5A) and (6A) using 02n n=  
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and  

 ( )22
1 0ˆ y yβ = − . (A-15) 

 
Asymptotic F Test (AFT) Anomaly Detector 

Our interest to pursue a principle of indirect comparison using as reference the one-way ANOVA 
approach motivated us to propose the AFT anomaly detector, which is defined as follows 
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equation (A-15), 1 0t̂ t yβ = −  [using equation A-10 and the mean averages in equations A-11 and 

A-14], 2
tS  was defined in equation A-11, and 2S  is the square root of equation A-12. 

Asymmetric Variance Test (AVT) Anomaly Detector 

Our interest to pursue a principle of indirect comparison by merely exploiting differences of 
estimated variances motivated us to propose the AVT anomaly detector, which is defined as 
follows 
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where, 2
tS  was defined in equation A-11, 2

0S  was defined in equation A-14, and using equation 
A-5 and the mean average in equation A-14  
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Reed-Xi (RX) Algorithm 

This detector is a generalized version of the adaptive spectral matched filter, where the problem 
was formulated to detect objects of a known spatial pattern but unknown spectral distribution 
against a clutter background with unknown spectral distribution against a clutter background 
with unknown spectral covariance.  This detector has been claimed to be one of the most robust 
detection techniques for the detection of a spectral anomaly in multispectral imagery—see 
references in report.  It was employed by the DARPA MUSIC program to detect military 
vehicles in an intense clutter background, and it became known in the community as the RX 
anomaly detector.  Eventually this detector became the industry standard for utility and 
comparison.  Using the context of our discussion, a popular version of the RX anomaly detector 
is shown below: 

 ( ) ( ) ( )t0 1
(1x ) ( x1)( x )0 1

RX b bb b

n nZ
n n

−= − −
+

1
in out out in outx x C x x , (A-26) 

where inx  is the sample mean vector using the columns of Xin in (7A), outx  is the sample mean 

vector using the columns of Xout in (8A), and 1
out
−C  is the inverse of a sample covariance matrix 

using the rows of Xout. 

Analysis of Variance (ANOVA) Anomaly Detector 

Our interest to have a well known method operating in the same feature space of our detectors’ 
feature space motivated us to adapt the ANOVA method into anomaly detection.  In the context 
of our discussion, the ANOVA detector is defined as 
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where, 2S  is the square root of equation A-12, iy  (i = 0, 1) is defined in equations A-13 and A-

14, and using equations A-5 and A-6 y  is 
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Fisher’s Linear Discriminant (FLD) Anomaly Detector 

Fisher’s linear discriminant analysis is a standard technique in pattern recognition.  It projects the 
original high dimensional data onto a low dimensional space, where all the classes are well 
separated by maximizing the Raleigh quotient, i.e., the ratio of between-class scatter matrix 
determinant to within-class scatter matrix determinant.  The application of the FLD detector to 
hyperspectral imagery has been investigated for anomaly detection and for object classification. 
(References are given in the report.)  

A version of FLD for the two-class (anomaly or not an anomaly) problem is show below: 
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where inx  is the sample mean vector using the columns of Xin in (7A), outx  is the sample mean 

vector using the columns of Xout in (8A),  •  denotes the absolute value operator, and 
B w

t
S /SE  

is the transposed highest energy eigenvector (1 x b) from the principal component decomposition 
using as input the scatter matrices ratio 1
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Where totalx totalx  is the total sample mean using the columns of X = [Xin  Xout], ( )i

inx  and ( )i
outx  

are the i-th columns of Xin and Xout, respectively, and 1inn n=  and 0outn n= . 

Dominant Principle Component (DPC) and Eigen Separation Transform (EST)  

The DPC and EST techniques are both based on the same general principle, i.e., data are 
projected from their original high dimensional space onto a significantly lower dimensional 
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space (in our case, only one dimension) using a criterion that promotes highest sample variability 
within each domain in this lower dimensional space.  (References on these approaches and their 
applications to the problem in context are given in the report.)  

Differences between DPC and EST anomaly detectors are better appreciated through their 
mathematical representations: 

 ( ) ( )( x1)(1x )DPC out bb
Z = −t

in outE x x , (A-24) 

 ( ) ( )
( x1)

(1x )
b

b

ESTZ = −t
ΔC in outE x x , (A-25) 

where inx  is the sample mean vector using the columns of Xin in (A-7) outx  is the sample mean 

vector using the columns of Xout in (A-8), out
tE  is the transposed highest energy eigenvector (1 x 

b) from the principal component decomposition using as input the covariance matrix outC  

estimated from the rows of Xout, and CΔ
tE  is the transposed highest positive energy eigenvector 

(1 x b) from the principal component decomposition using as input the difference CΔ  between 
the estimated covariance matrix inC  from the rows of Xin and the estimated covariance matrix 

outC  from the columns of Xout, i.e, ( )( x )in out b bC C CΔ = − .  

Estimated Parameters (Full Table) Used to Specify Data Models in the Simulation 
Experiments Described in Section 2. 

Table A-1. (Complete table for table 3) Estimated parameter values using real HS data from three arbitrarily 
chosen material classes, such that, two of these classes are relatively similar and the remaining one is 
distinct.  Estimated means 0μ̂  (class 1) and 1μ̂  (class 2) were attained from two similar classes, and 

estimated mean 2μ̂  (class 3) was obtained from a distinct class.  Estimates ( )0
ˆdiag Σ , ( )1

ˆdiag Σ , and 

( )2
ˆdiag Σ  are the diagonal terms of 0Σ̂ , 1Σ̂ , and 2Σ̂ , respectively. These vectors are 1 by 120 

representing these statistical results from 120 frequency bands.  

0μ̂   
(1.0e3) 

1μ̂   
(1.0e3) 

2μ̂   
(1.0e3) 

( )0
ˆdiag Σ  

(1.0e3) 
( )1

ˆdiag Σ  

(1.0e5) 
( )2

ˆdiag Σ  

(1.0e4) 
 

0.204325  
0.220555  
0.244355   
0.260325   
0.282800   
0.303000   
0.306015  
0.343840   
0.400310   

 
0.175925   
0.190895  
0.216750   
0.236395   
0.260630   
0.285110   
0.295890   
0.329070   
0.385030   

 
0.087980   
0.094050   
0.102410   
0.106035   
0.111530   
0.114955   
0.116005   
0.128410   
0.145650   

    
   0.160109 
   0.121826 
   0.138863 
   0.158180 
   0.172251 
   0.192190 
   0.155532 
   0.195692 
   0.229260 

  
   0.004161 
   0.005398 
   0.007945 
   0.011452  
   0.016150 
   0.022174 
   0.028275 
   0.039375 
   0.063204 

    
   0.011063 
   0.010110 
   0.012112 
   0.014576 
   0.015648 
   0.018835 
   0.018890 
   0.025303 
   0.033793 
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0.426200   
0.479340   
0.525745   
0.584655   
0.610340   
0.649755   
0.690790   
0.702835   
0.726870   
0.762175   
0.780015   
0.787180   
0.732555   
0.775930   
0.796820   
0.809625   
0.794150   
0.828195   
0.840075   
0.831380   
0.808975   
0.870040   
0.880055   
0.921765   
0.929725   
0.932220   
0.921085   
0.931650   
0.925530   
0.923355   
0.895975   
0.904015   
0.897305   
0.898590   
0.910205   
0.919870   
0.950490   
0.908910   
0.900230   
0.920960   
0.925045   
0.947905   
0.958455   
0.970680   
0.985745   
1.025030   
1.043480   
1.069190   
1.096320   
1.142055   
1.161080   
1.177265   
1.187560   
1.177625   
1.151170   
1.237895   

0.414335   
0.469640   
0.513335   
0.570855   
0.604405  
0.640735   
0.686715   
0.697190   
0.722825   
0.757420   
0.774675   
0.786200   
0.739030   
0.773770   
0.801540   
0.808330   
0.797925   
0.827975   
0.849915   
0.849795   
0.827500   
0.890830   
0.910140   
0.951300   
0.965590   
0.969280   
0.960860   
0.971825   
0.965370   
0.963485   
0.936730   
0.940870   
0.933275   
0.929095   
0.936845   
0.941215   
0.972275   
0.939200   
0.918710   
0.943310   
0.950590   
0.959410   
0.976075   
0.984340   
0.990600   
1.034935   
1.055125   
1.065800   
1.106635   
1.140765   
1.151510   
1.172715   
1.172275   
1.171750   
1.139275   
1.212965   

0.152510   
0.168075   
0.182130   
0.193020  
0.200715   
0.209895   
0.215935   
0.216030   
0.220090   
0.224515   
0.227240   
0.222435   
0.207110   
0.214565   
0.218215   
0.216085   
0.213265   
0.220475   
0.226515   
0.228955   
0.232415   
0.256610   
0.270255   
0.291850   
0.302075   
0.305220   
0.305565   
0.308275   
0.307330   
0.304205   
0.290005   
0.283295   
0.272225   
0.260715   
0.253370   
0.247705   
0.245425   
0.227990   
0.223610   
0.221570   
0.220935   
0.221330   
0.218455   
0.215080   
0.211135  
0.215405   
0.216075   
0.217685   
0.221330   
0.225910   
0.225105   
0.222430   
0.218775   
0.213845   
0.205155   
0.214355   

   0.253849 
   0.300336 
   0.440964 
   0.629634 
   0.622818 
   0.907532 
   1.049553 
   1.004279 
   1.348907 
   1.644939 
   1.767170 
   1.849846 
   1.669775 
   1.867784 
   2.201474 
   2.242838 
   2.272309 
   2.615393 
   2.615617 
   2.512106 
   2.415130 
   2.966651 
   2.880826 
   3.118864 
   3.239084 
   3.216936 
   3.111193 
   3.091625 
   3.177989 
   3.032310 
   2.919803 
   2.916648 
   2.827288 
   2.944866 
   2.799882 
   2.836294 
   3.206763 
   2.952202 
   2.725032 
   2.962862 
   2.952274 
   3.135744 
   3.165847 
   3.068278 
   3.181859 
   3.440069 
   3.393607 
   3.647220 
   4.174480 
   4.202403 
   4.282978 
   4.379311 
   4.562036 
   4.180486 
   4.049277 
   4.649119 

   0.080857 
   0.115043 
   0.149612 
   0.204707 
   0.239670 
   0.287662 
   0.342080 
   0.370186 
   0.416116 
   0.476546 
   0.519702 
   0.550012 
   0.487791 
   0.553223 
   0.614233 
   0.633637 
   0.614483 
   0.683276 
   0.715535 
   0.721765 
   0.659957 
   0.791883 
   0.808746 
   0.884936 
   0.909067 
   0.899421 
   0.880365 
   0.899690 
   0.894036 
   0.870426 
   0.830141 
   0.833355 
   0.819754 
   0.798283 
   0.823004 
   0.821598 
   0.886147 
   0.821648 
   0.786142 
   0.832184 
   0.852092 
   0.869849 
   0.896249 
   0.911621 
   0.914875 
   1.001250 
   1.042665 
   1.069506 
   1.143990 
   1.224413 
   1.246320 
   1.296082 
   1.294309 
   1.293686 
   1.224283 
   1.397175 

   0.039194 
   0.046178 
   0.052138 
   0.060838 
   0.070759 
   0.084692 
   0.094601 
   0.104717 
   0.115709 
   0.121292 
   0.134708 
   0.129150 
   0.123226 
   0.137767 
   0.147447 
   0.146689 
   0.144601 
   0.162850 
   0.161526 
   0.160688 
   0.155005 
   0.172193 
   0.197910 
   0.228888 
   0.232111 
   0.241986 
   0.235402 
   0.246211 
   0.247417 
   0.258352 
   0.227518 
   0.237817 
   0.234874 
   0.225671 
   0.223510 
   0.234855 
   0.237883 
   0.224186 
   0.221190 
   0.229621 
   0.225073 
   0.243380 
   0.242417 
   0.260409 
   0.258862 
   0.275730 
   0.297600 
   0.305052 
   0.331439 
   0.350069 
   0.364165 
   0.400537 
   0.387834 
   0.384884 
   0.373273 
   0.414268 
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1.241160   
1.251420   
1.270000   
1.277710   
1.282930   
1.196590   
1.234565   
1.327255   
1.383260   
1.422875   
1.462250   
1.493065   
1.423135   
1.334520   
1.381710   
1.393405   
1.466285   
1.483555   
1.486735   
1.493840   
1.460615   
1.426705   
1.182315   
0.766795   
1.110490   
1.302920   
1.314435   
1.295460   
1.260880   
1.222720   
1.177835   
1.153900   
1.125975   
1.086095   
1.051070   
0.984130   
0.912005   
0.901550   
0.911205   
0.892230   
0.906215   
0.918200   
0.908605   
0.877635   
0.845505   
0.830430   
0.858150   
0.825355   
0.802280   
0.802610   
0.797050   
0.810120   
0.793160   
0.779695   
0.751900 

1.215345   
1.225765   
1.237640   
1.249570   
1.268280   
1.187770   
1.234435   
1.342730   
1.411650   
1.463445   
1.515500   
1.561440   
1.508760   
1.426945   
1.469105   
1.491240   
1.560730   
1.583840   
1.579900   
1.587180   
1.551640   
1.520430  
1.265305 
0.843315  
1.182340   
1.384200  
1.386145 
1.371110   
1.337615  
1.289615   
1.244455 
1.214110  
1.187700   
1.150385   
1.107460   
1.042080   
0.965170  
0.955095   
0.962870   
0.931560   
0.944995  
0.962805   
0.951180   
0.920710   
0.878730  
0.867685 
0.890915  
0.851690 
0.826430  
0.819845  
0.813390  
0.816685  
0.809950   
0.792315  
0.760385 

0.211450   
0.208305   
0.212275   
0.212710   
0.217945   
0.210745   
0.232650   
0.276340   
0.336030   
0.411905   
0.505030   
0.602705   
0.670420   
0.749470   
0.877970   
1.001965   
1.176320   
1.289370   
1.381130   
1.460400   
1.475775   
1.474890   
1.207680   
0.803555   
1.193975   
1.381090   
1.396215   
1.377460   
1.336440   
1.295285   
1.241470   
1.214440   
1.177085   
1.128610   
1.087065   
1.013115   
0.933495   
0.920625   
0.934750   
0.902545   
0.913460   
0.920620   
0.908170   
0.875335   
0.826515   
0.810290   
0.824305   
0.777845   
0.755920   
0.752745   
0.735130   
0.727345  
0.705925   
0.693840   
0.639680 

   4.898225 
   4.627360 
   5.315728 
   4.811875 
   5.131763 
   4.359529 
   4.502458 
   5.158020 
   5.029861 
   5.262270 
   5.300158 
   5.364221 
   5.226288 
   4.466210 
   4.985041 
   4.207418 
   5.637853 
   5.622489 
   4.934738 
   5.310939 
   4.581474 
   4.644379 
   3.184297 
   1.544234 
   2.928974 
   3.327139 
   3.478528 
   3.346571 
   3.119583 
   3.141509 
   3.044982 
   2.866532 
   3.012285 
   2.467674 
   2.789874 
   2.311932 
   2.117954 
   2.167595 
   2.021148 
   2.366037 
   2.347496 
   2.494070 
   2.525084 
   2.141479 
   2.072753 
   2.318025 
   2.375163 
   2.343978 
   2.285790 
   2.325012 
   2.245886 
   2.337965 
   2.490024 
   2.174403 
   2.374914 

   1.403088 
   1.429392 
   1.459915 
   1.478746 
   1.517451 
   1.296109 
   1.362996 
   1.589815 
   1.701567 
   1.772021 
   1.836494 
   1.915909 
   1.708367 
   1.482968 
   1.553158 
   1.562387 
   1.671780 
   1.722372 
   1.684039 
   1.683869 
   1.571794 
   1.491099 
   0.962515 
   0.393423 
   0.841235 
   1.185519 
   1.176905 
   1.118177 
   1.035903 
   0.949031 
   0.861052 
   0.835313 
   0.790342 
   0.727008 
   0.652285 
   0.569328 
   0.478695 
   0.451016 
   0.469622 
   0.436912 
   0.435759 
   0.463938 
   0.426147 
   0.405547 
   0.368693 
   0.365784 
   0.370618 
   0.335777 
   0.318725 
   0.322827 
   0.322522 
   0.306014 
   0.302738 
   0.287481 
   0.277350 

   0.421946 
   0.422963 
   0.457859 
   0.436082 
   0.455665 
   0.385094 
   0.412412 
   0.490936 
   0.538960 
   0.560185 
   0.606341 
   0.715015 
   0.660536 
   0.728704 
   0.855156 
   1.112205 
   1.643040 
   2.056169 
   2.382719 
   2.732464 
   2.864592 
   2.829500 
   1.728644 
   0.751571 
   1.783286 
   2.190944 
   2.181804 
   2.190823 
   1.909793 
   1.779276 
   1.622846 
   1.572928 
   1.328350 
   1.279527 
   1.139547 
   0.868234 
   0.760942 
   0.734419 
   0.751153 
   0.735990 
   0.678744 
   0.736099 
   0.626397 
   0.550242 
   0.459082 
   0.476302 
   0.504363 
   0.465364 
   0.482355 
   0.454256 
   0.459890 
   0.401832 
   0.373889 
   0.321542 
   0.316555 
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